

Conduit

Conduit: Simplified Data Exchange for HPC Simulations

Introduction

Conduit is an open source project from Lawrence Livermore National Laboratory that provides an intuitive model for describing hierarchical scientific data in C++, C, Fortran, and Python. It is used for data coupling between packages in-core, serialization, and I/O tasks.

Conduit’s Core API provides:

	A flexible way to describe hierarchal data:

A JSON-inspired data model for describing hierarchical in-core scientific data.

	A sane API to access hierarchal data:

A dynamic API for rapid construction and consumption of hierarchical objects.

Conduit is under active development and targets Linux, OSX, and Windows platforms. The C++ API underpins the other language APIs and currently has the most features. We are still filling out the C, Fortran, and Python APIs.

Describing and sharing computational simulation meshes are very important use cases of Conduit.
The Mesh Blueprint facilitates this. For more details, please see the Mesh Blueprint Docs and Examples.

For more background on Conduit, please see Presentations and Publications.

Getting Started

To get started building and using Conduit, see the Quick Start Guide and the Conduit Tutorials for C++ and Python. For more details about building Conduit see the Building documentation.

Unique Features

Conduit was built around the concept that an intuitive in-core data description capability simplifies many other common tasks in the HPC simulation eco-system. To this aim, Conduit’s Core API:

	Provides a runtime focused in-core data description API that does not require repacking or code generation.

	Supports a mix of externally owned and Conduit allocated memory semantics.

Projects Using Conduit

Conduit is used in VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/], ALPINE Ascent [https://github.com/Alpine-DAV/ascent], MFEM [http://mfem.org/],
and Axom [https://github.com/LLNL/axom].

Conduit Project Resources

Online Documentation

http://software.llnl.gov/conduit/

Github Source Repo

https://github.com/llnl/conduit

Issue Tracker

https://github.com/llnl/conduit/issues

Conduit Libraries

The conduit library provides Conduit’s core data API. The relay and blueprint libraries provide higher-level services built on top of the core API.

conduit

	Provides Conduit’s Core API in C++ and subsets of Core API in Python, C, and Fortran.

	Optionally depends on Fortran and Python with NumPy

relay

	Provides:

	I/O functionally beyond simple binary, memory mapped, and json-based text file I/O.

	A light-weight web server for REST and WebSocket clients.

	Interfaces for MPI communication using conduit::Node instances as payloads.

	Optionally depends on silo, hdf5, szip, adios, and mpi

blueprint

	Provides interfaces for common higher-level conventions and data exchange protocols (eg. describing a “mesh”) using Conduit.

	No optional dependencies

See the User Documentation for more details on these libraries.

Contributors

	Cyrus Harrison (LLNL)

	Brian Ryujin (LLNL)

	Adam Kunen (LLNL)

	Joe Ciurej (LLNL)

	Kathleen Biagas (LLNL)

	Eric Brugger (LLNL)

	Aaron Black (LLNL)

	George Zagaris (LLNL)

	Kenny Weiss (LLNL)

	Matt Larsen (LLNL)

	Markus Salasoo (LLNL)

	Rebecca Haluska (LLNL)

	Arlie Capps (LLNL)

	Mark Miller (LLNL)

	Todd Gamblin (LLNL)

	Kevin Huynh (LLNL)

	Brad Whitlock (Intelligent Light)

	Chris Laganella (Intelligent Light)

	George Aspesi (Harvey Mudd)

	Justin Bai (Harvey Mudd)

	Rupert Deese (Harvey Mudd)

	Linnea Shin (Harvey Mudd)

In 2014 and 2015 LLNL sponsored a Harvey Mudd Computer Science Clinic project focused on using Conduit in HPC Proxy apps. You can read about more details about the clinic project from this LLNL article:
http://computation.llnl.gov/newsroom/hpc-partnership-harvey-mudd-college-and-livermore

Conduit Documentation

	Quick Start
	Installing Conduit and Third Party Dependencies

	Installing Conduit with pip

	Using Conduit in Your Project

	Learning Conduit

	User Documentation
	Conduit

	Relay

	Blueprint

	Building

	Glossary

	Developer Documentation
	Source Code Repo Layout

	Build System Info

	Git Development Workflow

	Releases
	v0.8.2

	v0.8.1

	v0.8.0

	v0.7.2

	v0.7.1

	v0.7.0

	v0.6.0

	v0.5.1

	v0.5.0

	v0.4.0

	v0.3.1

	v0.3.0

	v0.2.1

	v0.2.0

	Presentations and Publications
	Related Publications

	Presentation Slides

	Recorded Talks

	Interviews

	License Info
	Conduit License

Indices and tables

	Index

	Search Page

Quick Start

Installing Conduit and Third Party Dependencies

The quickest path to install conduit and its dependencies is via uberenv:

git clone --recursive https://github.com/llnl/conduit.git
cd conduit
python scripts/uberenv/uberenv.py --install --prefix="build"

After this completes, build/conduit-install will contain a Conduit install.

For more details about building and installing Conduit see Building. This page provides detailed info about Conduit’s CMake options, uberenv and Spack support. We also provide info about building for known HPC clusters using uberenv and a Docker example that leverages Spack.

Installing Conduit with pip

If you want to use Conduit primarily in Python, another option is to build
Conduit with pip. This assumes you have CMake in your path.

Basic Install:

git clone --recursive https://github.com/llnl/conduit.git
cd conduit
pip install . --user

If you have a system MPI and an existing HDF5 install you can add those
to the build using environment variables.

Install with HDF5 and MPI:

git clone --recursive https://github.com/llnl/conduit.git
cd conduit
env ENABLE_MPI=ON HDF5_DIR={path/to/hdf5_dir} pip install . --user

See Pip Install Docs for more details.

Using Conduit in Your Project

The install includes examples that demonstrate how to use Conduit in a CMake-based build system and via a Makefile.

CMake-based build system example (see: examples/conduit/using-with-cmake):

###
#
Example that shows how to use an installed instance of Conduit in another
CMake-based build system.
#
To build:
mkdir build
cd build
cmake -DCONDUIT_DIR={conduit install path} ../
make
./conduit_example
#
#
If run in sub directory of a conduit install,
CONDUIT_DIR will default to ../../..

mkdir build
cd build
cmake ..
make
./conduit_example
#
###

cmake_minimum_required(VERSION 3.0)

project(using_with_cmake)

##
Option 1: import conduit using an explicit path (recommended)
##

#
Provide default CONDUIT_DIR that works in a conduit install
#
if(NOT CONDUIT_DIR)
 set(CONDUIT_DIR "../../..")
endif()

#
Check for valid conduit install
#

if given relative path, resolve
get_filename_component(CONDUIT_DIR ${CONDUIT_DIR} ABSOLUTE)
check for expected cmake exported target files
if(NOT EXISTS ${CONDUIT_DIR}/lib/cmake/conduit/ConduitConfig.cmake)
 message(FATAL_ERROR "Could not find Conduit CMake include file (${CONDUIT_DIR}/lib/cmake/conduit/ConduitConfig.cmake)")
endif()

#
Use CMake's find_package to import conduit's targets
using explicit path
#
find_package(Conduit REQUIRED
 NO_DEFAULT_PATH
 PATHS ${CONDUIT_DIR}/lib/cmake/conduit)

##
Option 2: import conduit using find_package search
##
##
Add Conduit's install path to CMAKE_PREFIX_PATH
and use following find_package call to import conduit's targets
##
#
find_package(Conduit REQUIRED)
#

######
If Conduit was built with c++11 support, make sure we enable it
######
if(CONDUIT_USE_CXX11)
 set(CMAKE_CXX_STANDARD 11)
 set(CMAKE_CXX_STANDARD_REQUIRED ON)
endif()

###
create our example
###
add_executable(conduit_example conduit_example.cpp)

link to conduit targets
target_link_libraries(conduit_example conduit::conduit)

if you are using conduit's python CAPI capsule interface
target_link_libraries(conduit_example conduit::conduit_python)

if you are using conduit's mpi features
if(NOT MPI_FOUND)
find_package(MPI COMPONENTS CXX)
endif()
target_link_libraries(conduit_example conduit::conduit_mpi)

Makefile-based build system example (see: examples/conduit/using-with-make):

###
#
Example that shows how to use an installed instance of Conduit in Makefile
based build system.
#
To build:
make CONDUIT_DIR={conduit install path}
./conduit_example
#
From within a conduit install:
make
./conduit_example
#
Which corresponds to:
#
make CONDUIT_DIR=../../../
./conduit_example
#
###

CONDUIT_DIR ?= ../../..

See $(CONDUIT_DIR)/share/conduit/conduit_config.mk for detailed linking info
include $(CONDUIT_DIR)/share/conduit/conduit_config.mk

If Conduit was built with c++11 support, make sure we enable it
CXX_FLAGS = $(if $(CONDUIT_USE_CXX11),-std=c++11)
INC_FLAGS = $(CONDUIT_INCLUDE_FLAGS)
LNK_FLAGS = $(CONDUIT_LINK_RPATH) $(CONDUIT_LIB_FLAGS)

main:
	$(CXX) $(CXX_FLAGS) $(INC_FLAGS) conduit_example.cpp $(LNK_FLAGS) -o conduit_example

clean:
	rm -f conduit_example

Learning Conduit

To get starting learning the core Conduit API, see the Conduit Tutorials for C++ and Python.

User Documentation

	Conduit
	C++ Tutorial
	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Node References

	const Nodes

	Accessing Numeric Data
	Accessing Scalars and Arrays

	C++11 Initializer Lists

	Using Introspection and Conversion

	Reading YAML and JSON Strings
	Parsing text with Node::parse()

	Generators
	Using Generator instances

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	String Formatting Helpers
	fmt

	conduit::utils::format
	conduit::utils::format(string, args)

	conduit::utils::format(string, maps, map_index)

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

	Accessing Current Handlers

	Python Tutorial
	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Differences between C++ and Python APIs

	Reading YAML and JSON Strings
	Parsing text with Node::parse()

	Generators
	Using Generator instances

	String Formatting Helpers
	conduit.utils.format
	conduit.utils.format(string, args)

	conduit.utils.format(string, maps, map_index)

	Passing Conduit Nodes between C++, Fortran, and Python

	Relay
	Relay I/O
	Relay I/O Path-based Interface
	Relay I/O Path-based Interface Examples
	Save and Load

	Save Merged

	Load Merged

	Load from Subpath

	Save to Subpath

	Relay I/O Handle Interface
	Relay I/O Handle Examples

	Relay I/O HDF5 Interface
	Relay I/O HDF5 Interface Examples
	HDF5 I/O Interface Basics

	HDF5 I/O Options

	Relay MPI
	Known Schema Methods

	Generic Methods

	Python Relay MPI Module
	Python Relay MPI Module Examples
	Send and Receive Using Schema

	Send and Receive

	Send and Receive

	Sum All Reduce

	Broadcast Using Schema

	Broadcast

	All Gather Using Schema

	Blueprint
	Mesh Blueprint
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topologies

	Mixed Shape Toplogies
	Element Windings

	Polygonal/Polyhedral Topologies
	Polygonal Topologies

	Polyhedral Topologies

	Material Sets
	Material Set Buffer Variants
	Uni-Buffer Material Sets

	Multi-Buffer Material Sets

	Material Set Indexing Variants
	Element-Dominant Material Sets

	Material-Dominant Material Sets

	Fields
	Topology Association for Field Values

	Species Sets

	Nesting Sets

	Adjacency Sets
	Adjacency Set Variants
	Pairwise Adjacency Sets

	Max-Share Adjacency Sets

	State

	Mesh Blueprint Examples
	basic
	Uniform

	Rectilinear

	Structured

	Tris

	Quads

	Polygons

	Tets

	Hexs

	Polyhedra

	braid

	spiral

	julia

	julia amr examples

	venn

	polytess

	polychain

	miscellaneous
	Outputting Meshes for Visualization

	Loading Meshes from Files

	Complete Uniform Example

	Expressions (Derived Fields)

	O2MRelation Blueprint
	Protocol

	Properties, Queries, and Transforms

	O2MRelation Examples

	MCArray Blueprint
	Protocol

	Properties and Transforms

	MCArray Examples

	Table Blueprint
	Protocol

	Table Examples

	Partitioning
	Options

	Selections
	Logical Selection

	Explicit Selection

	Range Selection

	Field Selection

	Top Level Blueprint Interface

	Building
	Obtain the Conduit source

	Configure a build

	Build Options

	Installation Path Options

	Host Config Files

	Building Conduit and Third Party Dependencies

	Building Third Party Dependencies for Development
	Uberenv Options for Building Third Party Dependencies

	Building with Uberenv on Known HPC Platforms

	Building Conduit and its Dependencies with Spack

	Supported CMake Versions

	Using Conduit in Another Project

	Building Conduit in a Docker Container

	Building Conduit with pip

	Notes for Cray systems

	Notes for using OpenMPI in a container as root

	Glossary
	children

	paths

	external

Conduit

	C++ Tutorial
	Basic Concepts

	Accessing Numeric Data

	Reading YAML and JSON Strings

	Generators

	Data Ownership

	Node Update Methods

	String Formatting Helpers

	Error Handling

	Python Tutorial
	Basic Concepts

	Reading YAML and JSON Strings

	Generators

	String Formatting Helpers

	Passing Conduit Nodes between C++, Fortran, and Python

C++ Tutorial

This short tutorial provides C++ examples that demonstrate the Conduit’s Core
API. Conduit’s unit tests (src/tests/{library_name}/) also provide a rich set
of examples for Conduit’s Core API and additional libraries.
Ascent’s Tutorial also provides a brief intro to Conduit basics [https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html]
with C++ and Python examples.

	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Node References

	const Nodes

	Accessing Numeric Data
	Accessing Scalars and Arrays

	C++11 Initializer Lists

	Using Introspection and Conversion

	Reading YAML and JSON Strings
	Parsing text with Node::parse()

	Generators
	Using Generator instances

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	String Formatting Helpers
	fmt

	conduit::utils::format
	conduit::utils::format(string, args)

	conduit::utils::format(string, maps, map_index)

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

	Accessing Current Handlers

Basic Concepts

Node basics

The Node class is the primary object in conduit.

Think of it as a hierarchical variant object.

Node n;
n["my"] = "data";
n.print();

my: "data"

The Node class supports hierarchical construction.

Node n;
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;
n.print();

std::cout << "total bytes: " << n.total_strided_bytes() << std::endl;

my: "data"
a:
 b:
 c: "d"
 e: 64.0

total bytes: 15

Borrowing form JSON (and other similar notations), collections of named nodes are
called Objects and collections of unnamed nodes are called Lists, all other types
are leaves that represent concrete data.

Node n;
n["object_example/val1"] = "data";
n["object_example/val2"] = 10u;
n["object_example/val3"] = 3.1415;

for(int i = 0; i < 5 ; i++)
{
 Node &list_entry = n["list_example"].append();
 list_entry.set(i);
}

n.print();

object_example:
 val1: "data"
 val2: 10
 val3: 3.1415
list_example:
 - 0
 - 1
 - 2
 - 3
 - 4

You can use a NodeIterator (or a NodeConstIterator) to iterate through a Node’s
children.

Node n;
n["object_example/val1"] = "data";
n["object_example/val2"] = 10u;
n["object_example/val3"] = 3.1415;

for(int i = 0; i < 5 ; i++)
{
 Node &list_entry = n["list_example"].append();
 list_entry.set(i);
}

n.print();

NodeIterator itr = n["object_example"].children();
while(itr.has_next())
{
 Node &cld = itr.next();
 std::string cld_name = itr.name();
 std::cout << cld_name << ": " << cld.to_string() << std::endl;
}

std::cout << std::endl;

itr = n["list_example"].children();
while(itr.has_next())
{
 Node &cld = itr.next();
 std::cout << cld.to_string() << std::endl;
}

object_example:
 val1: "data"
 val2: 10
 val3: 3.1415
list_example:
 - 0
 - 1
 - 2
 - 3
 - 4

val1: "data"
val2: 10
val3: 3.1415

0
1
2
3
4

Behind the scenes, Node instances manage a collection of memory spaces.

Node n;
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;

Node ninfo;
n.info(ninfo);
ninfo.print();

mem_spaces:
 0x7fcad7c04c00:
 path: "my"
 type: "allocated"
 bytes: 5
 0x7fcad7c04440:
 path: "a/b/c"
 type: "allocated"
 bytes: 2
 0x7fcad7c04430:
 path: "a/b/e"
 type: "allocated"
 bytes: 8
total_bytes_allocated: 15
total_bytes_mmaped: 0
total_bytes_compact: 15
total_strided_bytes: 15

There is no absolute path construct, all paths are fetched relative to the current node (a leading
/ is ignored when fetching). Empty paths names are also ignored, fetching a///b is
equalvalent to fetching a/b.

Bitwidth Style Types

When sharing data in scientific codes, knowing the precision of the underlining types is very important.

Conduit uses well defined bitwidth style types (inspired by NumPy) for leaf values.

Node n;
uint32 val = 100;
n["test"] = val;
n.print();
n.print_detailed();

test: 100

{
 "test":
{
"dtype":"uint32",
"number_of_elements": 1,
"offset": 0,
"stride": 4,
"element_bytes": 4,
"endianness": "little"
, "value": 100}
}

Standard C++ numeric types will be mapped by the compiler to bitwidth style types.

Node n;
int val = 100;
n["test"] = val;
n.print_detailed();

{
 "test":
{
"dtype":"int32",
"number_of_elements": 1,
"offset": 0,
"stride": 4,
"element_bytes": 4,
"endianness": "little"
, "value": 100}
}

	Supported Bitwidth Style Types:

	
	signed integers: int8,int16,int32,int64

	unsigned integers: uint8,uint16,uint32,uint64

	floating point numbers: float32,float64

	Conduit provides these types by constructing a mapping for the current platform the from the following types:

	
	char, short, int, long, long long, float, double, long double

When C++11 support is enabled, Conduit’s bitwidth style types will match the C++11 standard bitwidth types defined in <cstdint>.

When a set method is called on a leaf Node, if the data passed to the set is compatible with the Node’s Schema the data is simply copied.

Compatible Schemas

When passed a compatible Node, Node methods update and update_compatible
allow you to copy data into Node or extend a Node with new data without
changing existing allocations.

Schemas do not need to be identical to be compatible.

You can check if a Schema is compatible with another Schema using the Schema::compatible(Schema &test) method. Here is the criteria for checking if two Schemas are compatible:

	If the calling Schema describes an Object : The passed test Schema must describe an Object and the test Schema’s children must be compatible with the calling Schema’s children that have the same name.

	If the calling Schema describes a List: The passed test Schema must describe a List, the calling Schema must have at least as many children as the test Schema, and when compared in list order each of the test Schema’s children must be compatible with the calling Schema’s children.

	If the calling Schema describes a leaf data type: The calling Schema’s and test Schema’s dtype().id() and dtype().element_bytes() must match, and the calling Schema dtype().number_of_elements() must be greater than or equal than the test Schema’s.

Node References

For most uses cases in C++, Node references are the best solution to build and
manipulate trees. They allow you to avoid expensive copies and pass around
sub-trees without worrying about valid pointers.

//
// In C++, use Node references!
//
// Using Node references is common (good) pattern!

// setup a node
Node root;
// set data in hierarchy
root["my/nested/path"] = 0.0;
// display the contents
root.print();

// Get a ref to the node in the tree
Node &data = root["my/nested/path"];
// change the value
data = 42.0;
// display the contents
root.print();

my:
 nested:
 path: 0.0

my:
 nested:
 path: 42.0

In C++ the Node assignment operator that takes a Node input is really an alias
to set. That is, if follows set (deep copy) semantics.

//
// C++ anti-pattern to avoid: copy instead of reference
//

// setup a node
Node root;
// set data in hierarchy
root["my/nested/path"] = 0.0;

// display the contents
root.print();

// In this case, notice we aren't using a reference.
// This creates a copy, disconnected from the orignal tree!
// This is probably not what you are looking for ...
Node data = root["my/nested/path"];
// change the value
data = 42.0;

// display the contents
root.print();

my:
 nested:
 path: 0.0

my:
 nested:
 path: 0.0

const Nodes

If you aren’t careful, the ability to easily create dynamic trees can
also undermine your process to consume them.
For example, asking for an expected but non-existent path will return
a reference to an empty Node. Surprise!

Methods like fetch_existing allow you to be more explicit
when asking for expected data. In C++, const Node references are also common
way to process trees in an read-only fashion. const methods will not modify
the tree structure, so if you ask for a non-existent path, you will receive
an error instead of reference to an empty Node.

// with non-const references, you can modify the node,
// leading to surprises in cases were read-only
// validation and processing is intended
void important_suprise(Node &data)
{
 // if this doesn't exist, we will get a new empty node
 // Note: we could also ask if the path exists via Node:has_path()
 int val = data["my/important/data"].to_int();
 std::cout << "\n==> important: " << val << std::endl;
}

// with const references, the api provides checks
// that help
void important(const Node &data)
{
 // if this doesn't exist, const access will trigger exception here
 // Note: we could also ask if the path exists via Node:has_path()
 int val = data["my/important/data"].to_int();
 std::cout << "\n==> important: " << val << std::endl;
}

//
// In C++, leverage const refs for processing existing nodes
//

// setup a node
Node n1;
n1["my/important/but/mistyped/path/to/data"] = 42.0;

std::cout << "== n1 == " << std::endl;
n1.print();

// method with non-const arg drives on ...
try
{
 important_suprise(n1);
}
catch(conduit::Error &e)
{
 e.print();
}

// check n1, was it was modified (yes ...)
std::cout << "n1 after calling `important_suprise`" << std::endl;
n1.print();

Node n2;
n2["my/important/but/mistyped/path/to/data"] = 42.0;

std::cout << "== n2 == " << std::endl;
n2.print();

// method with const arg lets us know, and also makes sure
// the node structure isn't modified
try
{
 important(n2);
}
catch(conduit::Error &e)
{
 e.print();
}

// check n2, was it was modified (no ...)
std::cout << "n2 after calling `important`" << std::endl;
n2.print();

== n1 ==

my:
 important:
 but:
 mistyped:
 path:
 to:
 data: 42.0

==> important: 0
n1 after calling `important_suprise`

my:
 important:
 but:
 mistyped:
 path:
 to:
 data: 42.0
 data:

== n2 ==

my:
 important:
 but:
 mistyped:
 path:
 to:
 data: 42.0

file: /Users/harrison37/Work/github/llnl/conduit/src/libs/conduit/conduit_node.cpp
line: 13050
message:
Cannot fetch non-existent child "data" from Node(my/important)

n2 after calling `important`

my:
 important:
 but:
 mistyped:
 path:
 to:
 data: 42.0

Accessing Numeric Data

Accessing Scalars and Arrays

You can access leaf types (numeric scalars or arrays) using Node’s as_{type}
methods.

Node n;
int64 val = 100;
n = val;
std::cout << n.as_int64() << std::endl;

100

Or you can use Node::value(), which can infer the correct return type via a
cast.

Node n;
int64 val = 100;
n = val;
int64 my_val = n.value();
std::cout << my_val << std::endl;

100

Accessing array data via pointers works the same way, using Node’s as_{type}
methods.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.as_int64_ptr();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

Or using Node::value():

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.value();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

For non-contiguous arrays, direct pointer access is complex due to the indexing
required. Conduit provides a simple DataArray class that handles per-element
indexing for all types of arrays.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,2, // # of elements
 0, // offset in bytes
 sizeof(int64)*2); // stride in bytes

int64_array my_vals = n.value();

for(index_t i=0; i < 2; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals.print();

my_vals[0] = 100
my_vals[1] = 300
[100, 300]

C++11 Initializer Lists

When C++11 support is enabled you can set Node values using initializer lists
with numeric literals.

Node n;

// set with integer c++11 initializer list
n.set({100,200,300});
n.print();

// assign with integer c++11 initializer list
n = {100,200,300};
n.print();

// set with floating point c++11 initializer list
n.set({1.0,2.0,3.0});
n.print();

// assign with floating point c++11 initializer list
n = {1.0,2.0,3.0};
n.print();

[100, 200, 300]
[100, 200, 300]
[1.0, 2.0, 3.0]
[1.0, 2.0, 3.0]

Using Introspection and Conversion

In this example, we have an array in a node that we are interested in
processing using an existing function that only handles doubles. We ensure
the node is compatible with the function, or transform it to a contiguous
double array.

//---
void must_have_doubles_function(double *vals,index_t num_vals)
{
 for(int i = 0; i < num_vals; i++)
 {
 std::cout << "vals[" << i << "] = " << vals[i] << std::endl;
 }
}

//---
void process_doubles(Node & n)
{
 Node res;
 // We have a node that we are interested in processing with
 // and existing function that only handles doubles.

 if(n.dtype().is_double() && n.dtype().is_compact())
 {
 std::cout << " using existing buffer" << std::endl;

 // we already have a contiguous double array
 res.set_external(n);
 }
 else
 {
 std::cout << " converting to temporary double array " << std::endl;

 // Create a compact double array with the values of the input.
 // Standard casts are used to convert each source element to
 // a double in the new array.
 n.to_double_array(res);
 }

 res.print();

 double *dbl_vals = res.value();
 index_t num_vals = res.dtype().number_of_elements();
 must_have_doubles_function(dbl_vals,num_vals);
}

//---
TEST(conduit_tutorial, numeric_double_conversion)
{

 float32 f32_vals[4] = {100.0,200.0,300.0,400.0};
 double d_vals[4] = {1000.0,2000.0,3000.0,4000.0};

 Node n;
 n["float32_vals"].set(f32_vals,4);
 n["double_vals"].set(d_vals,4);

 std::cout << "float32 case: " << std::endl;

 process_doubles(n["float32_vals"]);

 std::cout << "double case: " << std::endl;

 process_doubles(n["double_vals"]);
}

[OK] conduit_tutorial.numeric_double_conversion_start (0 ms)
[RUN] conduit_tutorial.numeric_double_conversion
float32 case:
 converting to temporary double array
[100.0, 200.0, 300.0, 400.0]
vals[0] = 100
vals[1] = 200
vals[2] = 300
vals[3] = 400
double case:
 using existing buffer
[1000.0, 2000.0, 3000.0, 4000.0]
vals[0] = 1000
vals[1] = 2000
vals[2] = 3000
vals[3] = 4000
[OK] conduit_tutorial.numeric_double_conversion (0 ms)
[RUN] conduit_tutorial.numeric_double_conversion_end

Reading YAML and JSON Strings

Parsing text with Node::parse()

Node::parse() parses YAML and JSON strings into a Node tree.

std::string yaml_txt("mykey: 42.0");

Node n;
n.parse(yaml_txt,"yaml");

std::cout << n["mykey"].as_float64() <<std::endl;

n.print_detailed();

42

{
 "mykey":
{
"dtype":"float64",
"number_of_elements": 1,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": 42.0}
}

std::string json_txt("{\"mykey\": 42.0}");

Node n;
n.parse(json_txt,"json");

std::cout << n["mykey"].as_float64() <<std::endl;

n.print_detailed();

42

{
 "mykey":
{
"dtype":"float64",
"number_of_elements": 1,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": 42.0}
}

The first argument is the string to parse and the second argument
selects the protocol to use when parsing.

Valid Protocols: json, conduit_json, conduit_base64_json, yaml.

	json and yaml protocols parse pure JSON or YAML strings. For leaf
nodes wide types such as int64, uint64, and float64 are inferred.

Homogeneous numeric lists are parsed as Conduit arrays.

std::string yaml_txt("myarray: [0.0, 10.0, 20.0, 30.0]");

Node n;
n.parse(yaml_txt,"yaml");

n["myarray"].print();

n.print_detailed();

[0.0, 10.0, 20.0, 30.0]

{
 "myarray":
{
"dtype":"float64",
"number_of_elements": 4,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": [0.0, 10.0, 20.0, 30.0]}
}

	conduit_json parses JSON with conduit data type information, allowing you
to specify bitwidth style types, strides, etc.

	conduit_base64_json combines the conduit_json protocol with an embedded
base64-encoded data block

Generators

Using Generator instances

Node::parse() is sufficient for most use cases, but you can also use a Generator
instance to parse JSON and YAML. Additionally, Generators can parse a
conduit JSON schema and bind it to in-core data.

Generator g("{test: {dtype: float64, value: 100.0}}","conduit_json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print();
n.print_detailed();

100

test: 100.0

{
 "test":
{
"dtype":"float64",
"number_of_elements": 1,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": 100.0}
}

Like Node::parse(), Generators can also parse pure JSON or YAML.
For leaf nodes: wide types such as int64, uint64, and float64 are inferred.

Generator g("{test: 100.0}","json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print_detailed();
n.print();

100

{
 "test":
{
"dtype":"float64",
"number_of_elements": 1,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": 100.0}
}

test: 100.0

Generator g("test: 100.0","yaml");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print_detailed();
n.print();

100

{
 "test":
{
"dtype":"float64",
"number_of_elements": 1,
"offset": 0,
"stride": 8,
"element_bytes": 8,
"endianness": "little"
, "value": 100.0}
}

test: 100.0

Schemas can be bound to in-core data.

float64 vals[2];
Generator g("{a: {dtype: float64, value: 100.0}, b: {dtype: float64, value: 200.0} }",
 "conduit_json",
 vals);

Node n;
g.walk_external(n);

std::cout << n["a"].as_float64() << " vs " << vals[0] << std::endl;
std::cout << n["b"].as_float64() << " vs " << vals[1] << std::endl;

n.print();

Node ninfo;
n.info(ninfo);
ninfo.print();

100 vs 100
200 vs 200

a: 100.0
b: 200.0

mem_spaces:
 0x7ffeebcfa130:
 path: "a"
 type: "external"
total_bytes_allocated: 0
total_bytes_mmaped: 0
total_bytes_compact: 16
total_strided_bytes: 16

Compacting Nodes

Nodes can be compacted to transform sparse data.

float64 vals[] = { 100.0,-100.0,
 200.0,-200.0,
 300.0,-300.0,
 400.0,-400.0,
 500.0,-500.0};

// stride though the data with two different views.
Generator g1("{dtype: float64, length: 5, stride: 16}",
 "conduit_json",
 vals);
Generator g2("{dtype: float64, length: 5, stride: 16, offset:8}",
 "conduit_json",
 vals);

Node n1;
g1.walk_external(n1);
n1.print();

Node n2;
g2.walk_external(n2);
n2.print();

// look at the memory space info for our two views
Node ninfo;
n1.info(ninfo);
ninfo.print();

n2.info(ninfo);
ninfo.print();

// compact data from n1 to a new node
Node n1c;
n1.compact_to(n1c);

// look at the resulting compact data
n1c.print();
n1c.schema().print();
n1c.info(ninfo);
ninfo.print();

// compact data from n2 to a new node
Node n2c;
n2.compact_to(n2c);

// look at the resulting compact data
n2c.print();
n2c.info(ninfo);
ninfo.print();

[100.0, 200.0, 300.0, 400.0, 500.0]
[-100.0, -200.0, -300.0, -400.0, -500.0]

mem_spaces:
 0x7ffeebcfa0f0:
 path: ""
 type: "external"
total_bytes_allocated: 0
total_bytes_mmaped: 0
total_bytes_compact: 40
total_strided_bytes: 72

mem_spaces:
 0x7ffeebcfa0f0:
 path: ""
 type: "external"
total_bytes_allocated: 0
total_bytes_mmaped: 0
total_bytes_compact: 40
total_strided_bytes: 72

[100.0, 200.0, 300.0, 400.0, 500.0]
{"dtype":"float64","number_of_elements": 5,"offset": 0,"stride": 8,"element_bytes": 8,"endianness": "little"}

mem_spaces:
 0x7f9510404140:
 path: ""
 type: "allocated"
 bytes: 40
total_bytes_allocated: 40
total_bytes_mmaped: 0
total_bytes_compact: 40
total_strided_bytes: 40

[-100.0, -200.0, -300.0, -400.0, -500.0]

mem_spaces:
 0x7f95104040c0:
 path: ""
 type: "allocated"
 bytes: 40
total_bytes_allocated: 40
total_bytes_mmaped: 0
total_bytes_compact: 40
total_strided_bytes: 40

Data Ownership

The Node class provides two ways to hold data, the data is either owned or externally described:

	If a Node owns data, the Node allocated the memory holding the data and is responsible or deallocating it.

	If a Node externally describes data, the Node holds a pointer to the memory where the data resides and is not responsible for deallocating it.

set vs set_external

The Node::set methods support creating owned data and copying data values in both the owned and externally described cases. The Node::set_external methods allow you to create externally described data:

	set(…): Makes a copy of the data passed into the Node. This will trigger an allocation if the current data type of the Node is incompatible with what was passed. The Node assignment operators use their respective set variants, so they follow the same copy semantics.

	set_external(…): Sets up the Node to describe data passed and access the data externally. Does not copy the data.

int vsize = 5;
std::vector<float64> vals(vsize,0.0);
for(int i=0;i<vsize;i++)
{
 vals[i] = 3.1415 * i;
}

Node n;
n["v_owned"] = vals;
n["v_external"].set_external(vals);

n.info().print();

n.print();

vals[1] = -1 * vals[1];
n.print();

mem_spaces:
 0x7f9779501180:
 path: "v_owned"
 type: "allocated"
 bytes: 40
 0x7f9779500dc0:
 path: "v_external"
 type: "external"
total_bytes_allocated: 40
total_bytes_mmaped: 0
total_bytes_compact: 80
total_strided_bytes: 80

v_owned: [0.0, 3.1415, 6.283, 9.4245, 12.566]
v_external: [0.0, 3.1415, 6.283, 9.4245, 12.566]

v_owned: [0.0, 3.1415, 6.283, 9.4245, 12.566]
v_external: [0.0, -3.1415, 6.283, 9.4245, 12.566]

Node Update Methods

The Node class provides three update methods which allow you to easily copy data or the description of data from a source node.

	Node::update(Node &source):

This method behaves similar to a python dictionary update. Entires from the source Node are copied into the calling Node, here are more concrete details:

	If the source describes an Object:

	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child with the same name already exists in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source describes a List:

	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child already exists in the same list order in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source Node describes a leaf data type:

	Update works exactly like a set (not true yet).

	Node::update_compatible(Node &source):

This method copies data from the children in the source Node that are compatible with children in the calling node. No changes are made where children are incompatible.

	Node::update_external(Node &source):

This method creates children in the calling Node that externally describe the children in the source node. It differs from Node::set_external(Node &source) in that set_external() will clear the calling Node so it exactly match an external description of the source Node, whereas update_external() will only change the children in the calling Node that correspond to children in the source Node.

String Formatting Helpers

fmt

For C++ users, conduit includes a built-in version of the fmt library (https://fmt.dev/).
Since other projects also bundle fmt, the conduit version is modified to
place everything in the conduit_fmt namespace instead of the default fmt namespace.
This is a safe approach to avoid potential confusion and static linking consequences.

When using conduit in C++, you can use its built-in fmt as follows:

// conduit_fmt is installed along with conduit
#include "conduit_fmt/conduit_fmt.h"

// fmt features are in the conduit_fmt namespace
std::string res = conduit_fmt::format("The answer is {}.", 42);
std::cout << res << std::endl;

res = conduit_fmt::format("The answer is {answer:0.4f}.",
 conduit_fmt::arg("answer",3.1415));
std::cout << res << std::endl;

The answer is 42.
The answer is 3.1415.

conduit::utils::format

In addition to direct fmt support, conduit utils provides conduit::utils::format methods that enable fmt style string formatting with the arguments are passed as a conduit::Node tree.
These simplify use cases such as generating path string, allowing the pattern string and
arguments to be stored as part of a conduit hierarchy (and in HDF5, YAML, etc files).
This feature is also available in Conduit’s Python API (conduit.utils.format).

conduit::utils::format(string, args)

The args case allows named arguments (args passed as object) or ordered args (args passed as list).

conduit::utils::format(string, args) – object case:

// conduit::utils::format w/ args + object
// processes named args passed via a conduit Node
Node args;
args["answer"] = 42;
std::string res = conduit::utils::format("The answer is {answer:04}.",
 args);
std::cout << res << std::endl;

args.reset();
args["adjective"] = "other";
args["answer"] = 3.1415;

res = conduit::utils::format("The {adjective} answer is {answer:0.4f}.",
 args);

std::cout << res << std::endl;

The answer is 0042.
The other answer is 3.1415.

conduit::utils::format(string, args) – list case:

// conduit::utils::format w/ args + list
// processes ordered args passed via a conduit Node
Node args;
args.append() = 42;
std::string res = conduit::utils::format("The answer is {}.", args);
std::cout << res << std::endl;

args.reset();
args.append() = "other";
args.append() = 3.1415;

res = conduit::utils::format("The {} answer is {:0.4f}.", args);

std::cout << res << std::endl;

The answer is 42.
The other answer is 3.1415.

conduit::utils::format(string, maps, map_index)

The maps case also supports named or ordered args and works in conjunction with a map_index. The map_index is used to fetch a value from an array, or list of strings, which is then passed to fmt. The maps style of indexed indirection supports generating path strings for non-trivial domain partition mappings in Blueprint.

conduit::utils::format(string, maps, map_index) – object case:

// conduit::utils::format w/ maps + object
// processing named args passed via a conduit Node, indexed by map_index
Node maps;
maps["answer"].set({ 42.0, 3.1415});

std::string res = conduit::utils::format("The answer is {answer:04}.",
 maps, 0);
std::cout << res << std::endl;

res = conduit::utils::format("The answer is {answer:04}.", maps, 1);
std::cout << res << std::endl << std::endl;

maps.reset();
maps["answer"].set({ 42.0, 3.1415});
Node &slist = maps["position"];
slist.append() = "first";
slist.append() = "second";

res = conduit::utils::format("The {position} answer is {answer:0.4f}.",
 maps, 0);

std::cout << res << std::endl;

res = conduit::utils::format("The {position} answer is {answer:0.4f}.",
 maps, 1);

std::cout << res << std::endl;

The answer is 0042.
The answer is 3.1415.

The first answer is 42.0000.
The second answer is 3.1415.

conduit::utils::format(string, maps, map_index) – list case:

// conduit::utils::format w/ maps + list
// processing ordered args passed via a conduit Node, indexed by map_index
Node maps;
maps.append() = { 42.0, 3.1415};
std::string res = conduit::utils::format("The answer is {}.",
 maps, 0);
std::cout << res << std::endl;

res = conduit::utils::format("The answer is {}.", maps, 1);
std::cout << res << std::endl << std::endl;

maps.reset();

// first arg
Node &slist = maps.append();
slist.append() = "first";
slist.append() = "second";

// second arg
maps.append() = { 42.0, 3.1415};

res = conduit::utils::format("The {} answer is {:0.4f}.", maps, 0);
std::cout << res << std::endl;

res = conduit::utils::format("The {} answer is {:0.4f}.", maps, 1);
std::cout << res << std::endl;

The answer is 42.
The answer is 3.1415.

The first answer is 42.0000.
The second answer is 3.1415.

Error Handling

Conduit’s APIs emit three types of messages for logging and error handling:

	Message Type

	Description

	Info

	General Information

	Warning

	Recoverable Error

	Error

	Fatal Error

Default Error Handlers

Conduit provides a default handler for each message type:

	Message Type

	Default Action

	Info

	Prints the message to standard out

	Warning

	Throws a C++ Exception (conduit::Error instance)

	Error

	Throws a C++ Exception (conduit::Error instance)

Using Custom Error Handlers

The conduit::utils namespace provides functions to override each of the three default handlers with a method
that provides the following signature:

void my_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 // your handling code here ...
}

conduit::utils::set_error_handler(my_handler);

Here is an example that re-wires all three error handlers to print to standard out:

//---
void my_info_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[INFO] " << msg << std::endl;
}

void my_warning_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[WARNING!] " << msg << std::endl;
}

void my_error_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[ERROR!] " << msg << std::endl;
 // errors are considered fatal, aborting or unwinding the
 // call stack with an exception are the only viable options
 throw conduit::Error(msg,file,line);
}

// rewire error handlers
conduit::utils::set_info_handler(my_info_handler);
conduit::utils::set_warning_handler(my_warning_handler);
conduit::utils::set_error_handler(my_error_handler);

// emit an example info message
CONDUIT_INFO("An info message");

Node n;
n["my_value"].set_float64(42.0);

// emit an example warning message

// using "as" for wrong type emits a warning, returns a default value (0.0)
float32 v = n["my_value"].as_float32();

// emit an example error message

try
{
 // fetching a non-existant path from a const Node emits an error
 const Node &n_my_value = n["my_value"];
 n_my_value["bad"];
}
catch(conduit::Error &e)
{
 // pass
}

[INFO] An info message
[WARNING!] Node::as_float32() const -- DataType float64 at path my_value does not equal expected DataType float32
[ERROR!] Cannot fetch_existing, Node(my_value) is not an object

Using Restoring Default Handlers

The default handlers are part of the conduit::utils interface, so you can restore them using:

// restore default handlers
conduit::utils::set_info_handler(conduit::utils::default_info_handler);
conduit::utils::set_warning_handler(conduit::utils::default_warning_handler);
conduit::utils::set_error_handler(conduit::utils::default_error_handler);

Accessing Current Handlers

You can access the currently active handlers using the conduit::utils::info_handler(),
conduit::utils::warning_handler(), and conduit::utils::error_handler() methods.
Here is an example that shows how to save the current handlers, temporarily restore
the default handlers, execute an operation, and finally restore the saved handlers:

// store current handlers
conduit::utils::conduit_info_handler on_info = conduit::utils::info_handler();
conduit::utils::conduit_warning_handler on_warn = conduit::utils::warning_handler();
conduit::utils::conduit_error_handler on_error = conduit::utils::error_handler();

// temporarily restore default handlers
conduit::utils::set_info_handler(conduit::utils::default_info_handler);
conduit::utils::set_warning_handler(conduit::utils::default_warning_handler);
conduit::utils::set_error_handler(conduit::utils::default_error_handler);

// do something exciting ...

// done with excitement, reset to previously saved handlers
conduit::utils::set_info_handler(on_info);
conduit::utils::set_warning_handler(on_warn);
conduit::utils::set_error_handler(on_error);

Python Tutorial

This short tutorial provides Python examples that demonstrate the Conduit’s Core
API. Conduit’s unit tests (src/tests/{library_name}/python) also provide a rich set
of examples for Conduit’s Core API and additional libraries.
Ascent’s Tutorial also provides a brief intro to Conduit basics [https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Basics.html]
with C++ and Python examples.

	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Differences between C++ and Python APIs

	Reading YAML and JSON Strings
	Parsing text with Node::parse()

	Generators
	Using Generator instances

	String Formatting Helpers
	conduit.utils.format
	conduit.utils.format(string, args)

	conduit.utils.format(string, maps, map_index)

Basic Concepts

Node basics

The Node class is the primary object in conduit.

Think of it as a hierarchical variant object.

import conduit
n = conduit.Node()
n["my"] = "data"
print(n)

 my: "data"

The Node class supports hierarchical construction.

n = conduit.Node()
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;
print(n)
print("total bytes: {}\n".format(n.total_strided_bytes()))

 my: "data"
 a:
 b:
 c: "d"
 e: 64.0

 total bytes: 15

Borrowing from JSON (and other similar notations), collections of named nodes are
called Objects and collections of unnamed nodes are called Lists, all other types
are leaves that represent concrete data.

n = conduit.Node()
n["object_example/val1"] = "data"
n["object_example/val2"] = 10
n["object_example/val3"] = 3.1415

for i in range(5):
 l_entry = n["list_example"].append()
 l_entry.set(i)
print(n)

 object_example:
 val1: "data"
 val2: 10
 val3: 3.1415
 list_example:
 - 0
 - 1
 - 2
 - 3
 - 4

You can iterate through a Node’s children.

n = conduit.Node()
n["object_example/val1"] = "data"
n["object_example/val2"] = 10
n["object_example/val3"] = 3.1415

for i in range(5):
 l_entry = n["list_example"].append()
 l_entry.set(i)
print(n)

for v in n["object_example"].children():
 print("{}: {}".format(v.name(),str(v.node())))
print()
for v in n["list_example"].children():
 print(v.node())

 object_example:
 val1: "data"
 val2: 10
 val3: 3.1415
 list_example:
 - 0
 - 1
 - 2
 - 3
 - 4

 val1: "data"
 val2: 10
 val3: 3.1415

 0
 1
 2
 3
 4

Behind the scenes, Node instances manage a collection of memory spaces.

n = conduit.Node()
n["my"] = "data"
n["a/b/c"] = "d"
n["a"]["b"]["e"] = 64.0
print(n.info())

 mem_spaces:
 0x7fa45d800830:
 path: "my"
 type: "allocated"
 bytes: 5
 0x7fa45d82caa0:
 path: "a/b/c"
 type: "allocated"
 bytes: 2
 0x7fa45d816b10:
 path: "a/b/e"
 type: "allocated"
 bytes: 8
 total_bytes_allocated: 15
 total_bytes_mmaped: 0
 total_bytes_compact: 15
 total_strided_bytes: 15

There is no absolute path construct, all paths are fetched relative to the current node (a leading
/ is ignored when fetching). Empty paths names are also ignored, fetching a///b is
equalvalent to fetching a/b.

Bitwidth Style Types

When sharing data in scientific codes, knowing the precision of the underlining types is very important.

Conduit uses well defined bitwidth style types (inspired by NumPy) for leaf values. In Python, leaves
are provided as NumPy ndarrays.

n = conduit.Node()
n["test"] = numpy.uint32(100)
print(n)

 test: 100

Standard Python numeric types will be mapped to bitwidth style types.

n = conduit.Node()
n["test"] = 10
print(n.schema())

 {
 "test": {"dtype":"int64","number_of_elements": 1,"offset": 0,"stride": 8,"element_bytes": 8,"endianness": "little"}
 }

	Supported Bitwidth Style Types:

	
	signed integers: int8,int16,int32,int64

	unsigned integers: uint8,uint16,uint32,uint64

	floating point numbers: float32,float64

	Conduit provides these types by constructing a mapping for the current platform the from the following C++ types:

	
	char, short, int, long, long long, float, double, long double

When a set method is called on a leaf Node, if the data passed to the set is compatible with the Node’s Schema the data is simply copied.

Compatible Schemas

When passed a compatible Node, Node methods update and update_compatible
allow you to copy data into Node or extend a Node with new data without
changing existing allocations.

Schemas do not need to be identical to be compatible.

You can check if a Schema is compatible with another Schema using the Schema::compatible(Schema &test) method. Here is the criteria for checking if two Schemas are compatible:

	If the calling Schema describes an Object : The passed test Schema must describe an Object and the test Schema’s children must be compatible with the calling Schema’s children that have the same name.

	If the calling Schema describes a List: The passed test Schema must describe a List, the calling Schema must have at least as many children as the test Schema, and when compared in list order each of the test Schema’s children must be compatible with the calling Schema’s children.

	If the calling Schema describes a leaf data type: The calling Schema’s and test Schema’s dtype().id() and dtype().element_bytes() must match, and the calling Schema dtype().number_of_elements() must be greater than or equal than the test Schema’s.

Differences between C++ and Python APIs

In Python, Node objects are reference-counted containers that hold C++ Node
pointers. This provides a Python API similar to using references in C++.
However, you should be aware of some key differences.

This provides similar API in Python to using references in C++, however there
are a few key differences to be aware of.

The [] operator is different in that it will return not only Nodes, but numpy arrays
depending on the context:

setup a node with a leaf array
n = conduit.Node()
data = numpy.zeros((5,),dtype=numpy.float64)
n["my/path/to/data"] = data

this will be an ndarray
my_data = n["my/path/to/data"]
print("== this will be an ndarray == ")
print("data: ", my_data)
print("repr: ",repr(my_data))
print()

this will be a node
n_my_path = n["my/path"]
print("== this will be a node == ")
print("{node}\n", n_my_path)
print("{schema}\n",n_my_path.schema().to_yaml())

 == this will be an ndarray ==
 data: [0. 0. 0. 0. 0.]
 repr: array([0., 0., 0., 0., 0.])

 == this will be a node ==
 {node}

 to:
 data: [0.0, 0.0, 0.0, 0.0, 0.0]

 {schema}

 to:

 data:
 dtype: "float64"
 number_of_elements: 5
 offset: 0
 stride: 8
 element_bytes: 8
 endianness: "little"

If you are expecting a Node, the best way to access a subpath is using
fetch() or fetch_existing():

setup a node with a leaf array
n = conduit.Node()
data = numpy.zeros((5,),dtype=numpy.float64)
n["my/path/to/data"] = data

this will be an ndarray
my_data = n["my/path/to/data"]
print("== this will be an ndarray == ")
print("data: ", my_data)
print("repr: ",repr(my_data))
print()

equiv access via fetch (or fetch_existing)
first fetch the node and then the array
my_data = n.fetch("my/path/to/data").value()
print("== this will be an ndarray == ")
print("data: ",my_data)
print("repr: ",repr(my_data))
print()

 == this will be an ndarray ==
 data: [0. 0. 0. 0. 0.]
 repr: array([0., 0., 0., 0., 0.])

 == this will be an ndarray ==
 data: [0. 0. 0. 0. 0.]
 repr: array([0., 0., 0., 0., 0.])

We use the const construct in C++ to provide additional seat belts for read-only
style access to Nodes. We don’t provide a similar overall construct in Python, but
the standard methods like fetch_existing() do support these types
of use cases:

setup a node with a leaf array
n = conduit.Node()
data = numpy.zeros((5,),dtype=numpy.float64)
n["my/path/to/data"] = data

access via fetch existing
first fetch the node
n_data = n.fetch_existing("my/path/to/data")
then the value
my_data = n_data.value()
print("== this will be an ndarray == ")
print("data: ",my_data)
print("repr: ",repr(my_data))
print()

using fetch_existing,
if the path doesn't exist - we will get an Exception
try:
 n_data = n.fetch_existing("my/path/TYPO/data")
except Exception as e:
 print("Here is what went wrong:")
 print(e)

 == this will be an ndarray ==
 data: [0. 0. 0. 0. 0.]
 repr: array([0., 0., 0., 0., 0.])

 Here is what went wrong:

 file: /Users/harrison37/Work/github/llnl/conduit/src/libs/conduit/conduit_node.cpp
 line: 13050
 message:
 Cannot fetch non-existent child "TYPO" from Node(my/path)

Reading YAML and JSON Strings

Parsing text with Node::parse()

Node.parse() parses YAML and JSON strings into a Node tree.

yaml_txt = "mykey: 42.0"

n = conduit.Node()
n.parse(yaml_txt,"yaml")

print(n["mykey"])
print(n.schema())

 42.0

 {
 "mykey": {"dtype":"float64","number_of_elements": 1,"offset": 0,"stride": 8,"element_bytes": 8,"endianness": "little"}
 }

json_txt = '{"mykey": 42.0}'

n = conduit.Node()
n.parse(json_txt,"json")

print(n["mykey"])
print(n.schema())

 42.0

 {
 "mykey": {"dtype":"float64","number_of_elements": 1,"offset": 0,"stride": 8,"element_bytes": 8,"endianness": "little"}
 }

The first argument is the string to parse and the second argument
selects the protocol to use when parsing.

Valid Protocols: json, conduit_json, conduit_base64_json, yaml.

	json and yaml protocols parse pure JSON or YAML strings. For leaf
nodes wide types such as int64, uint64, and float64 are inferred.

Homogeneous numeric lists are parsed as Conduit arrays.

yaml_txt = "myarray: [0.0, 10.0, 20.0, 30.0]"

n = conduit.Node()
n.parse(yaml_txt,"yaml")

print(n["myarray"])

print(n.fetch("myarray").schema())

 [0. 10. 20. 30.]
 {"dtype":"float64","number_of_elements": 4,"offset": 0,"stride": 8,"element_bytes": 8,"endianness": "little"}

	conduit_json parses JSON with conduit data type information, allowing you
to specify bitwidth style types, strides, etc.

	conduit_base64_json combines the conduit_json protocol with an embedded
base64-encoded data block

Generators

Using Generator instances

Node.parse() is sufficient for most use cases, but you can also use a Generator
instance to parse JSON and YAML. Additionally, Generators can parse a
conduit JSON schema and bind it to in-core data.

g = conduit.Generator("{test: {dtype: float64, value: 100.0}}",
 "conduit_json")
n = conduit.Node()
g.walk(n)
print(n["test"])
print(n)

 100.0

 test: 100.0

Like Node::parse(), Generators can also parse pure JSON or YAML.
For leaf nodes: wide types such as int64, uint64, and float64 are inferred.

g = conduit.Generator("{test: 100.0}",
 "json")
n = conduit.Node()
g.walk(n)
print(n["test"])
print(n)

 100.0

 test: 100.0

g = conduit.Generator("test: 100.0",
 "yaml")
n = conduit.Node()
g.walk(n)
print(n["test"])
print(n)

 100.0

 test: 100.0

String Formatting Helpers

conduit.utils.format

String formatting in Python land has always been much more pleasant than in C++ land.
In C++, we bundle fmt, but Python’s out-of-the box support for string formatting
is fantastic. Since users may encode format string arguments in conduit Nodes
(and in HDF5, YAML, etc files) we still provide access the fmt based
conduit.utils.format functionality in Python.

conduit.utils.format(string, args)

The args case allows named arguments (args passed as object) or ordered args (args passed as list).

conduit.utils.format(string, args) – object case:

import conduit
import conduit.utils

args = conduit.Node()
args["answer"] = 42

print(conduit.utils.format("The answer is {answer:04}.", args = args))

args.reset()
args["adjective"] = "other";
args["answer"] = 3.1415;

print(conduit.utils.format("The {adjective} answer is {answer:0.4f}.",
 args = args))

 The answer is 0042.
 The other answer is 3.1415.

conduit.utils.format(string, args) – list case:

import conduit
import conduit.utils

args = conduit.Node()
args.append().set(42)

print(conduit.utils.format("The answer is {:04}.",args = args))

args.reset()
args.append().set("other")
args.append().set(3.1415)

print(conduit.utils.format("The {} answer is {:0.4f}.", args =args))

 The answer is 0042.
 The other answer is 3.1415.

conduit.utils.format(string, maps, map_index)

The maps case also supports named or ordered args and works in conjunction with a map_index. The map_index is used to fetch a value from an array, or list of strings, which is then passed to fmt. The maps style of indexed indirection supports generating path strings for non-trivial domain partition mappings in Blueprint.

conduit.utils.format(string, maps, map_index) – object case:

import conduit
import conduit.utils
import numpy as np

maps = conduit.Node()
maps["answer"].set(np.array([42.0, 3.1415]))

print(conduit.utils.format("The answer is {answer:04}.",
 maps = maps, map_index = 0))

print(conduit.utils.format("The answer is {answer:04}.",
 maps = maps, map_index = 1))
print()

maps.reset()
maps["answer"].set(np.array([42.0, 3.1415]));
slist = maps["position"];
slist.append().set("first")
slist.append().set("second")

print(conduit.utils.format("The {position} answer is {answer:0.4f}.",
 maps = maps, map_index = 0))

print(conduit.utils.format("The {position} answer is {answer:0.4f}.",
 maps = maps, map_index = 1))

 The answer is 0042.
 The answer is 3.1415.

 The first answer is 42.0000.
 The second answer is 3.1415.

conduit.utils.format(string, maps, map_index) – list case:

import conduit
import conduit.utils
import numpy as np

maps = conduit.Node()
vals = np.array([42.0, 3.1415])
maps.append().set(vals)

print(conduit.utils.format("The answer is {}.",
 maps = maps, map_index = 0))

print(conduit.utils.format("The answer is {}.",
 maps = maps, map_index = 1))
print()

maps.reset()
first arg
slist = maps.append();
slist.append().set("first")
slist.append().set("second")

second arg
maps.append().set(vals)

print(conduit.utils.format("The {} answer is {:0.4f}.",
 maps = maps, map_index = 0))

print(conduit.utils.format("The {} answer is {:0.4f}.",
 maps = maps, map_index = 1))

 The answer is 42.
 The answer is 3.1415.

 The first answer is 42.0000.
 The second answer is 3.1415.

Passing Conduit Nodes between C++, Fortran, and Python

The cpp_fort_and_py example demonstrates how to pass Conduit Nodes between
C++, Fortran, and Python. It is a standalone example that you can build with
CMake against your Conduit install.

You can find this example under src/examples/cpp_fort_and_py in
Conduit’s source tree, or under examples/conduit/cpp_fort_and_py in
a Conduit install.

It includes source for an embedded python interpreter and also shows how
to create a Fortran module that binds Conduit Nodes via Conduit’s C-API.

It creates two executables:

	conduit_cpp_and_py_ex

	Demo of C++ to Python and vice versa

	conduit_fort_and_py_ex

	Demo of Fortran to Python and vice versa

This demos wrapping Conduit Nodes, effectively creating referenced
data across languages. You can also use set_external to directly access
and change zero-copied data.

Please see the main CMakeList.txt file for details on building and running:

cpp_fort_and_py/CMakeLists.txt excerpt:

Example that shows how to use Conduit across C++, Fortran, and an
embedded Python interpreter.

Building:

Note: The python instance must have the conduit python module installed
or it must be in your PYTHONPATH.

> mkdir build
> cd build

if conduit python module is not installed in your python instance
> export PYTHONPATH=/path/to/conduit-install/python-modules

> cmake \
 -DCONDUIT_DIR=/path/to/conduit/install
 -DPYTHON_EXECUTABLE=/path/to/python/bin/python
 ../
> make

Running:
> ./conduit_cpp_and_py_ex
> ./conduit_fort_and_py_ex

if conduit python module is not installed in your python instance
> env PYTHONPATH=/path/to/conduit-install/python-modules ./conduit_cpp_and_py_ex
> env PYTHONPATH=/path/to/conduit-install/python-modules ./conduit_fort_and_py_ex

Relay

Note

The relay APIs and docs are work in progress.

Conduit Relay is an umbrella project for I/O and communication functionality built on top of Conduit’s Core API. It includes four components:

	io - I/O functionally beyond binary, memory mapped, and json-based text file I/O. Includes optional Silo, HDF5, and ADIOS I/O support.

	web - An embedded web server (built using CivetWeb [https://github.com/civetweb/civetweb]) that can host files and supports developing custom REST and WebSocket backends that use conduit::Node instances as payloads.

	mpi - Interfaces for MPI communication using conduit::Node instances as payloads.

	mpi::io - I/O functionality as with io library but with some notion of collective writing to a shared file that can include multiple time steps and domains.

The io and web features are built into the conduit_relay library. The MPI functionality exists in a separate library conduit_relay_mpi to avoid include and linking issues for serial codes that want to use relay. Likewise, the parallel versions of the I/O functions are built into the conduit_relay_mpi_io library so it can be linked to parallel codes.

	Relay I/O
	Relay I/O Path-based Interface
	Relay I/O Path-based Interface Examples
	Save and Load

	Save Merged

	Load Merged

	Load from Subpath

	Save to Subpath

	Relay I/O Handle Interface
	Relay I/O Handle Examples

	Relay I/O HDF5 Interface
	Relay I/O HDF5 Interface Examples
	HDF5 I/O Interface Basics

	HDF5 I/O Options

	Relay MPI
	Known Schema Methods

	Generic Methods

	Python Relay MPI Module
	Python Relay MPI Module Examples
	Send and Receive Using Schema

	Send and Receive

	Send and Receive

	Sum All Reduce

	Broadcast Using Schema

	Broadcast

	All Gather Using Schema

Relay I/O

Conduit Relay I/O provides optional Silo, HDF5, and ADIOS I/O interfaces.

These interfaces can be accessed through a generic path-based API, generic handle class, or through APIs specific to each underlying I/O interface. The specific APIs provide lower level control and allow reuse of handles, which is more efficient for most non-trivial use cases. The generic handle class strikes a balance between usability and efficiency.

Relay I/O Path-based Interface

The path-based Relay I/O interface allows you to read and write conduit::Nodes using any enabled I/O interface through a simple path-based (string) API. The underlying I/O interface is selected using the extension of the destination path or an explicit protocol argument.

The conduit_relay library provides the following methods in the conduit::relay::io namespace:

	relay::io::save

	Saves the contents of the passed Node to a file. Works like a Node::set to the file: if the file exists, it is overwritten to reflect contents of the passed Node.

	relay::io::save_merged

	Merges the contents of the passed Node to a file. Works like a Node::update to the file: if the file exists, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	relay::io::load

	Loads the contents of a file into the passed Node. Works like a Node::set from the contents of the file: if the Node has existing data, it is overwritten to reflect contents of the file.

	relay::io::load_merged

	Merges the contents of a file into the passed Node. Works like a Node::update rom the contents of the file: if the Node has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

The conduit_relay_mpi_io library provides the conduit::relay::mpi::io namespace which includes variants of these methods which take a MPI Communicator. These variants pass the communicator to the underlying I/O interface to enable collective I/O. Relay currently only supports collective I/O for ADIOS.

Relay I/O Path-based Interface Examples

Save and Load

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to json using save
conduit::relay::io::save(n,"my_output.json");

//load back from json using load
Node n_load;
conduit::relay::io::load("my_output.json",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

a:
 my_data: 1.0
 b:
 my_string: "value"

Load result:

a:
 my_data: 1.0
 b:
 my_string: "value"

Save Merged

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using save
conduit::relay::io::save(n,"my_output.hdf5");

// append a new path to the hdf5 file using save_merged
Node n2;
n2["a/b/new_data"] = 42.0;
std::cout << "\nNode to append:" << std::endl;
n2.print();
conduit::relay::io::save_merged(n2,"my_output.hdf5");

Node n_load;
// load back from hdf5 using load:
conduit::relay::io::load("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

a:
 my_data: 1.0
 b:
 my_string: "value"

Node to append:

a:
 b:
 new_data: 42.0

Load result:

a:
 my_data: 1.0
 b:
 my_string: "value"
 new_data: 42.0

Load Merged

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5");

// append to existing node with data from hdf5 file using load_merged
Node n_load;
n_load["a/b/new_data"] = 42.0;
std::cout << "\nNode to load into:" << std::endl;
n_load.print();
conduit::relay::io::load_merged("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

a:
 my_data: 1.0
 b:
 my_string: "value"

Node to load into:

a:
 b:
 new_data: 42.0

Load result:

a:
 b:
 new_data: 42.0
 my_string: "value"
 my_data: 1.0

Load from Subpath

	C++ Example:

// setup node to save
Node n;
n["path/to/my_data"] = 1.0;
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5");

// load only a subset of the tree
Node n_load;
conduit::relay::io::load("my_output.hdf5:path/to",n_load);
std::cout << "\nLoad result from 'path/to'" << std::endl;
n_load.print();

	Output:

Node to write:

path:
 to:
 my_data: 1.0

Load result from 'path/to'

my_data: 1.0

Save to Subpath

	C++ Example:

// setup node to save
Node n;
n["my_data"] = 1.0;
std::cout << "\nNode to write to 'path/to':" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5:path/to");

// load only a subset of the tree
Node n_load;
conduit::relay::io::load("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write to 'path/to':

my_data: 1.0

Load result:

path:
 to:
 my_data: 1.0

Relay I/O Handle Interface

The relay::io::IOHandle class provides a high level interface to query, read, and modify files.

It provides a generic interface that is more efficient than the path-based interface for protocols like HDF5 which support partial I/O and querying without reading the entire contents of a file.
It also supports simpler built-in protocols (conduit_bin, json, etc) that do not support partial I/O for convenience. Its basic contract is that changes to backing (file on disk, etc) are not guaranteed to be reflected until the handle is closed. Relay I/O Handle supports reading AXOM Sidre DataStore Style files. Relay I/O Handle does not yet support Silo or ADIOS.

IOHandle has the following instance methods:

	open

	Opens a handle. The underlying I/O interface is selected using the extension of the destination path or an explicit protocol argument. Supports reading and writing by default. Select a different mode by passing an options node that contains a mode child with one of the following strings:

	rw read + write (default mode)

	Supports both read and write operations. Creates file if it does not exist.

	r read only

	Only supports read operations. Throws an Error if you open a non-existing file or on any attempt to write.

	w write only

	Only supports write operations. Throws an Error on any attempt to read.

Danger

Note: While you can read from and write to subpaths using a handle, IOHandle does not support opening a file with a subpath (e.g. myhandle.open("file.hdf5:path/data")).

	read

	Merges the contents from the handle or contents from a subpath of the handle into the passed Node. Works like a Node::update from the handle: if the Node has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	write

	Writes the contents of the passed Node to the handle or to a subpath of the handle. Works like a Node::update to the handle: if the handle has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	has_path

	Checks if the handle contains a given path.

	list_child_names

	Returns a list of the child names at a given path, or an empty list if the path does not exist.

	remove

	Removes any data at and below a given path. With HDF5 the space may not be fully reclaimed.

	close

	Closes a handle. This is when changes are realized to the backing (file on disc, etc).

Relay I/O Handle Examples

	C++ Example:

// setup node with example data to save
Node n;
n["a/data"] = 1.0;
n["a/more_data"] = 2.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

// save to hdf5 file using the path-based api
conduit::relay::io::save(n,"my_output.hdf5");

// inspect and modify with an IOHandle
conduit::relay::io::IOHandle h;
h.open("my_output.hdf5");

// check for and read a path we are interested in
if(h.has_path("a/data"))
{
 Node nread;
 h.read("a/data",nread);
 std::cout << "\nValue at \"a/data\" = "
 << nread.to_float64()
 << std::endl;
}

// check for and remove a path we don't want
if(h.has_path("a/more_data"))
{
 h.remove("a/more_data");
 std::cout << "\nRemoved \"a/more_data\""
 << std::endl;
}

// verify the data was removed
if(!h.has_path("a/more_data"))
{
 std::cout << "\nPath \"a/more_data\" is no more"
 << std::endl;
}

std::cout << "\nWriting to \"a/c\""
 << std::endl;
// write some new data
n = 42.0;
h.write(n,"a/c");

// find the names of the children of "a"
std::vector<std::string> cld_names;
h.list_child_names("a",cld_names);

// print the names
std::cout << "\nChildren of \"a\": ";
std::vector<std::string>::const_iterator itr;
for (itr = cld_names.begin();
 itr < cld_names.end();
 ++itr)
{
 std::cout << "\"" << *itr << "\" ";
}

std::cout << std::endl;

Node nread;
// read the entire contents
h.read(nread);

std::cout << "\nRead Result:" << std::endl;
nread.print();

	Output:

Node to write:

a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

Value at "a/data" = 1

Removed "a/more_data"

Path "a/more_data" is no more

Writing to "a/c"

Children of "a": "data" "b" "c"

Read Result:

a:
 data: 1.0
 b:
 my_string: "value"
 c: 42.0

	Python Example:

import conduit
import conduit.relay.io

n = conduit.Node()
n["a/data"] = 1.0
n["a/more_data"] = 2.0
n["a/b/my_string"] = "value"
print("\nNode to write:")
print(n)

save to hdf5 file using the path-based api
conduit.relay.io.save(n,"my_output.hdf5")

inspect and modify with an IOHandle
h = conduit.relay.io.IOHandle()
h.open("my_output.hdf5")

check for and read a path we are interested in
if h.has_path("a/data"):
 nread = conduit.Node()
 h.read(nread,"a/data")
 print('\nValue at "a/data" = {0}'.format(nread.value()))

check for and remove a path we don't want
if h.has_path("a/more_data"):
 h.remove("a/more_data")
 print('\nRemoved "a/more_data"')

verify the data was removed
if not h.has_path("a/more_data"):
 print('\nPath "a/more_data" is no more')

write some new data
print('\nWriting to "a/c"')
n.set(42.0)
h.write(n,"a/c")

find the names of the children of "a"
cnames = h.list_child_names("a")
print('\nChildren of "a": {0}'.format(cnames))

nread = conduit.Node()
read the entire contents
h.read(nread)

print("\nRead Result:")
print(nread)

	Output:

 Node to write:

 a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

 Value at "a/data" = 1.0

 Removed "a/more_data"

 Path "a/more_data" is no more

 Writing to "a/c"

 Children of "a": ['data', 'b', 'c']

 Read Result:

 a:
 data: 1.0
 b:
 my_string: "value"
 c: 42.0

	C++ Sidre Basic Example:

// this example reads a sample hdf5 sidre style file

std::string input_fname = relay_test_data_path(
 "texample_sidre_basic_ds_demo.sidre_hdf5");

// open our sidre file for read with an IOHandle
conduit::relay::io::IOHandle h;
h.open(input_fname,"sidre_hdf5");

// find the names of the children at the root
std::vector<std::string> cld_names;
h.list_child_names(cld_names);

// print the names
std::cout << "\nChildren at root: ";
std::vector<std::string>::const_iterator itr;
for (itr = cld_names.begin();
 itr < cld_names.end();
 ++itr)
{
 std::cout << "\"" << *itr << "\" ";
}

Node nread;
// read the entire contents
h.read(nread);

std::cout << "\nRead Result:" << std::endl;
nread.print();

	Output:

Children at root: "my_scalars" "my_strings" "my_arrays"
Read Result:

my_scalars:
 i64: 1
 f64: 10.0
my_strings:
 s0: "s0 string"
 s1: "s1 string"
my_arrays:
 a5_i64: [0, 1, 2, 3, 4]
 a5_i64_ext: [0, 1, 2, 3, -5]
 b_v1: [1.0, 1.0, 1.0]
 b_v2: [2.0, 2.0, 2.0]

	Python Sidre Basic Example:

import conduit
import conduit.relay.io

this example reads a sample hdf5 sidre style file
input_fname = relay_test_data_path("texample_sidre_basic_ds_demo.sidre_hdf5")

open our sidre file for read with an IOHandle
h = conduit.relay.io.IOHandle()
h.open(input_fname,"sidre_hdf5")

find the names of the children at the root
cnames = h.list_child_names()
print('\nChildren at root {0}'.format(cnames))

nread = conduit.Node()
read the entire contents
h.read(nread);

print("Read Result:")
print(nread)

	Output:

 Children at root ['my_scalars', 'my_strings', 'my_arrays']
 Read Result:

 my_scalars:
 i64: 1
 f64: 10.0
 my_strings:
 s0: "s0 string"
 s1: "s1 string"
 my_arrays:
 a5_i64: [0, 1, 2, 3, 4]
 a5_i64_ext: [0, 1, 2, 3, -5]
 b_v1: [1.0, 1.0, 1.0]
 b_v2: [2.0, 2.0, 2.0]

	C++ Sidre with Root File Example:

// this example reads a sample hdf5 sidre datastore, grouped by a root file
std::string input_fname = relay_test_data_path(
 "out_spio_blueprint_example.root");

// read using the root file
conduit::relay::io::IOHandle h;
h.open(input_fname,"sidre_hdf5");

// find the names of the children at the root
std::vector<std::string> cld_names;
h.list_child_names(cld_names);

// the "root" (/) of the Sidre-based IOHandle to the datastore provides
// access to the root file itself, and all of the data groups

// print the names
std::cout << "\nChildren at root: ";
std::vector<std::string>::const_iterator itr;
for (itr = cld_names.begin();
 itr < cld_names.end();
 ++itr)
{
 std::cout << "\"" << *itr << "\" ";
}

Node nroot;
// read the entire root file contents
h.read("root",nroot);

std::cout << "\nRead \"root\" Result:" << std::endl;
nroot.print();

Node nread;
// read all of data group 0
h.read("0",nread);

std::cout << "\nRead \"0\" Result:" << std::endl;
nread.print();

// reset, or trees will blend in this case
nread.reset();

// read a subpath of data group 1
h.read("1/mesh",nread);

std::cout << "\nRead \"1/mesh\" Result:" << std::endl;
nread.print();

	Output:

Children at root: "root" "0" "1" "2" "3"
Read "root" Result:

blueprint_index:
 mesh:
 state:
 number_of_domains: 4
 coordsets:
 coords:
 type: "uniform"
 coord_system:
 axes:
 x:
 y:
 type: "cartesian"
 path: "mesh/coordsets/coords"
 topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
 path: "mesh/topologies/mesh"
 fields:
 field:
 number_of_components: 1
 topology: "mesh"
 association: "element"
 path: "mesh/fields/field"
 rank:
 number_of_components: 1
 topology: "mesh"
 association: "element"
 path: "mesh/fields/rank"
file_pattern: "out_spio_blueprint_example/out_spio_blueprint_example_%07d.hdf5"
number_of_files: 4
number_of_trees: 4
protocol:
 name: "sidre_hdf5"
 version: "0.0"
tree_pattern: "datagroup_%07d"

Read "0" Result:

mesh:
 coordsets:
 coords:
 dims:
 i: 3
 j: 3
 origin:
 x: 0.0
 y: -10.0
 spacing:
 dx: 10.0
 dy: 10.0
 type: "uniform"
 topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
 fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]
 rank:
 association: "element"
 topology: "mesh"
 values: [0, 0, 0, 0]

Read "1/mesh" Result:

coordsets:
 coords:
 dims:
 i: 3
 j: 3
 origin:
 x: 20.0
 y: -10.0
 spacing:
 dx: 10.0
 dy: 10.0
 type: "uniform"
topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]
 rank:
 association: "element"
 topology: "mesh"
 values: [1, 1, 1, 1]

	Python Sidre with Root File Example:

import conduit
import conduit.relay.io

this example reads a sample hdf5 sidre datastore,
grouped by a root file
input_fname = relay_test_data_path("out_spio_blueprint_example.root")

open our sidre datastore for read via root file with an IOHandle
h = conduit.relay.io.IOHandle()
h.open(input_fname,"sidre_hdf5")

find the names of the children at the root
the "root" (/) of the Sidre-based IOHandle to the datastore provides
access to the root file itself, and all of the data groups
cnames = h.list_child_names()
print('\nChildren at root {0}'.format(cnames))

nroot = conduit.Node();
read the entire root file contents
h.read(path="root",node=nroot);

print("Read 'root' Result:")
print(nroot)

nread = conduit.Node();
read all of data group 0
h.read(path="0",node=nread);

print("Read '0' Result:")
print(nread)

#reset, or trees will blend in this case
nread.reset();

read a subpath of data group 1
h.read(path="1/mesh",node=nread);

print("Read '1/mesh' Result:")
print(nread)

	Output:

 Children at root ['root', '0', '1', '2', '3']
 Read 'root' Result:

 blueprint_index:
 mesh:
 state:
 number_of_domains: 4
 coordsets:
 coords:
 type: "uniform"
 coord_system:
 axes:
 x:
 y:
 type: "cartesian"
 path: "mesh/coordsets/coords"
 topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
 path: "mesh/topologies/mesh"
 fields:
 field:
 number_of_components: 1
 topology: "mesh"
 association: "element"
 path: "mesh/fields/field"
 rank:
 number_of_components: 1
 topology: "mesh"
 association: "element"
 path: "mesh/fields/rank"
 file_pattern: "out_spio_blueprint_example/out_spio_blueprint_example_%07d.hdf5"
 number_of_files: 4
 number_of_trees: 4
 protocol:
 name: "sidre_hdf5"
 version: "0.0"
 tree_pattern: "datagroup_%07d"

 Read '0' Result:

 mesh:
 coordsets:
 coords:
 dims:
 i: 3
 j: 3
 origin:
 x: 0.0
 y: -10.0
 spacing:
 dx: 10.0
 dy: 10.0
 type: "uniform"
 topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
 fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]
 rank:
 association: "element"
 topology: "mesh"
 values: [0, 0, 0, 0]

 Read '1/mesh' Result:

 coordsets:
 coords:
 dims:
 i: 3
 j: 3
 origin:
 x: 20.0
 y: -10.0
 spacing:
 dx: 10.0
 dy: 10.0
 type: "uniform"
 topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
 fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]
 rank:
 association: "element"
 topology: "mesh"
 values: [1, 1, 1, 1]

Relay I/O HDF5 Interface

The Relay I/O HDF5 interface provides methods to read and write Nodes using HDF5 handles.
It is also the interface used to implement the path-based and handle I/O interfaces for
HDF5. This interface provides more control and allows more efficient reuse of I/O handles.
It is only available in C++.

Relay I/O HDF5 Interface Examples

Here is a example exercising the basic parts of Relay I/O’s HDF5 interface, for
more detailed documentation see the conduit_relay_io_hdf5_api.hpp header file.

HDF5 I/O Interface Basics

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

// open hdf5 file and obtain a handle
hid_t h5_id = conduit::relay::io::hdf5_create_file("myoutput.hdf5");

// write data
conduit::relay::io::hdf5_write(n,h5_id);

// close our file
conduit::relay::io::hdf5_close_file(h5_id);

// open our file to read
h5_id = conduit::relay::io::hdf5_open_file_for_read_write("myoutput.hdf5");

// check if a subpath exists
if(conduit::relay::io::hdf5_has_path(h5_id,"a/my_data"))
 std::cout << "\nPath 'myoutput.hdf5:a/my_data' exists" << std::endl;

Node n_read;
// read a subpath (Note: read works like `load_merged`)
conduit::relay::io::hdf5_read(h5_id,"a/my_data",n_read);
std::cout << "\nData loaded:" << std::endl;
n_read.print();

// write more data to the file
n.reset();
// write data (appends data, works like `save_merged`)
// the Node tree needs to be compatible with the existing
// hdf5 state, adding new paths is always fine.
n["a/my_data"] = 3.1415;
n["a/b/c"] = 144;
// lists are also supported
n["a/my_list"].append() = 42.0;
n["a/my_list"].append() = 42;

conduit::relay::io::hdf5_write(n,h5_id);

// check if a subpath of a list exists
if(conduit::relay::io::hdf5_has_path(h5_id,"a/my_list/0"))
 std::cout << "\nPath 'myoutput.hdf5:a/my_list/0' exists" << std::endl;

// Read the entire tree:
n_read.reset();
conduit::relay::io::hdf5_read(h5_id,n_read);
std::cout << "\nData loaded:" << std::endl;
n_read.print();

// other helpers:

// check if a path is a hdf5 file:
if(conduit::relay::io::is_hdf5_file("myoutput.hdf5"))
 std::cout << "\nFile 'myoutput.hdf5' is a hdf5 file" << std::endl;

	Output:

Node to write:

a:
 my_data: 1.0
 b:
 my_string: "value"

Path 'myoutput.hdf5:a/my_data' exists

Data loaded:
1.0

Path 'myoutput.hdf5:a/my_list/0' exists

Data loaded:

a:
 my_data: 3.1415
 b:
 my_string: "value"
 c: 144
 my_list:
 - 42.0
 - 42

File 'myoutput.hdf5' is a hdf5 file

HDF5 I/O Options

	C++ Example:

Node io_about;
conduit::relay::io::about(io_about);
std::cout << "\nRelay I/O Info and Default Options:" << std::endl;
io_about.print();

Node &hdf5_opts = io_about["options/hdf5"];
// change the default chunking threshold to
// a smaller number to enable compression for
// a small array
hdf5_opts["chunking/threshold"] = 2000;
hdf5_opts["chunking/chunk_size"] = 2000;

std::cout << "\nNew HDF5 I/O Options:" << std::endl;
hdf5_opts.print();
// set options
conduit::relay::io::hdf5_set_options(hdf5_opts);

int num_vals = 5000;
Node n;
n["my_values"].set(DataType::float64(num_vals));

float64 *v_ptr = n["my_values"].value();
for(int i=0; i< num_vals; i++)
{
 v_ptr[i] = float64(i);
}

// save using options
std::cout << "\nsaving data to 'myoutput_chunked.hdf5' " << std::endl;

conduit::relay::io::hdf5_save(n,"myoutput_chunked.hdf5");

	Output:

Relay I/O Info and Default Options:

protocols:
 json: "enabled"
 conduit_json: "enabled"
 conduit_base64_json: "enabled"
 yaml: "enabled"
 conduit_bin: "enabled"
 hdf5: "enabled"
 sidre_hdf5: "enabled"
 conduit_silo: "disabled"
 conduit_silo_mesh: "disabled"
 adios: "disabled"
options:
 hdf5:
 compact_storage:
 enabled: "true"
 threshold: 1024
 chunking:
 enabled: "true"
 threshold: 2000000
 chunk_size: 1000000
 compression:
 method: "gzip"
 level: 5

New HDF5 I/O Options:

compact_storage:
 enabled: "true"
 threshold: 1024
chunking:
 enabled: "true"
 threshold: 2000
 chunk_size: 2000
 compression:
 method: "gzip"
 level: 5

saving data to 'myoutput_chunked.hdf5'

You can verify using h5stat that the data set was written to the hdf5 file using chunking and
compression.

Relay MPI

The Conduit Relay MPI library enables MPI communication using conduit::Node instances as payloads. It provides two categories of functionality: Known Schema Methods and Generic Methods. These categories balance flexibility and performance tradeoffs. In all cases the implementation tries to avoid unnecessary reallocation, subject to the constraints of MPI’s API input requirements.

Known Schema Methods

Methods that transfer a Node’s data, assuming the schema is known. They assume that Nodes used for output are implicitly compatible with their sources.

	Supported MPI Primitives:

	
	send/recv

	isend/irecv

	reduce/all_reduce

	broadcast

	gather/all_gather

For both point to point and collectives, here is the basic logic for how input Nodes are treated by these methods:

	For Nodes holding data to be sent:

	If the Node is compact and contiguously allocated, the Node’s pointers are passed directly to MPI.

	If the Node is not compact or not contiguously allocated, the data is compacted to temporary contiguous buffers that are passed to MPI.

	For Nodes used to hold output data:

	If the output Node is compact and contiguously allocated, the Node’s pointers are passed directly to MPI.

	If the output Node is not compact or not contiguously allocated, a Node with a temporary contiguous buffer is created and that buffer is passed to MPI. An update call is used to copy out the data from the temporary buffer to the output Node. This avoids re-allocation and modifying the schema of the output Node.

Generic Methods

Methods that transfer both a Node’s data and schema. These are useful for generic messaging, since the schema does not need to be known by receiving tasks. The semantics of MPI place constraints on what can be supported in this category.

	Supported MPI Primitives:

	
	send/recv

	gather/all_gather

	broadcast

	Unsupported MPI Primitives:

	
	isend/irecv

	reduce/all_reduce

For both point to point and collectives, here is the basic logic for how input Nodes are treated by these methods:

	For Nodes holding data to be sent:

	If the Node is compact and contiguously allocated:

	The Node’s schema is sent as JSON

	The Node’s pointers are passed directly to MPI

	If the Node is not compact or not contiguously allocated:

	The Node is compacted to temporary Node

	The temporary Node’s schema is sent as JSON

	The temporary Nodes’s pointers are passed to MPI

	For Nodes used to hold output data:

	If the output Node is not compatible with the received schema, it is reset using the received schema.

	If the output Node is compact and contiguously allocated, its pointers are passed directly to MPI.

	If the output Node is not compact or not contiguously allocated, a Node with a temporary contiguous buffer is created and that buffer is passed to MPI. An update call is used to copy out the data from the temporary buffer to the output Node. This avoids re-allocation and modifying the schema of the output Node.

Python Relay MPI Module

Relay MPI is supported in Python via the conduit.relay.mpi module.
Methods take Fortran-style MPI communicator handles which are effectively integers.
(We hope to also support direct use of mpi4py communicator objects in the future.)

Use the following to get a handle from the mpi4py world communicator:

from mpi4py import MPI
comm_id = MPI.COMM_WORLD.py2f()

Python Relay MPI Module Examples

Send and Receive Using Schema

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

Note: example expects 2 mpi tasks

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

send a node and its schema from rank 0 to rank 1
n = conduit.Node()
if comm_rank == 0:
 # setup node to send on rank 0
 n["a/data"] = 1.0
 n["a/more_data"] = 2.0
 n["a/b/my_string"] = "value"

show node data on rank 0
if comm_rank == 0:
 print("[rank: {}] sending: {}".format(comm_rank,n.to_yaml()))

if comm_rank == 0:
 relay.mpi.send_using_schema(n,dest=1,tag=0,comm=comm_id)
else:
 relay.mpi.recv_using_schema(n,source=0,tag=0,comm=comm_id)

show received node data on rank 1
if comm_rank == 1:
 print("[rank: {}] received: {}".format(comm_rank,n.to_yaml()))

	Output:

 [rank: 0] sending:
 a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

 [rank: 1] received:
 a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

Send and Receive

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

Note: example expects 2 mpi tasks

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

send data from a node on rank 0 to rank 1
(both ranks have nodes with compatible schemas)
n = conduit.Node(conduit.DataType.int64(4))
if comm_rank == 0:
 # setup node to send on rank 0
 vals = n.value()
 for i in range(4):
 vals[i] = i * i

show node data on rank 0
if comm_rank == 0:
 print("[rank: {}] sending: {}".format(comm_rank,n.to_yaml()))

if comm_rank == 0:
 relay.mpi.send(n,dest=1,tag=0,comm=comm_id)
else:
 relay.mpi.recv(n,source=0,tag=0,comm=comm_id)

show received node data on rank 1
if comm_rank == 1:
 print("[rank: {}] received: {}".format(comm_rank,n.to_yaml()))

	Output:

 [rank: 0] sending: [0, 1, 4, 9]
 [rank: 1] received: [0, 1, 4, 9]

Send and Receive

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

Note: example expects 2 mpi tasks

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

send data from a node on rank 0 to rank 1
(both ranks have nodes with compatible schemas)
n = conduit.Node(conduit.DataType.int64(4))
if comm_rank == 0:
 # setup node to send on rank 0
 vals = n.value()
 for i in range(4):
 vals[i] = i * i

show node data on rank 0
if comm_rank == 0:
 print("[rank: {}] sending: {}".format(comm_rank,n.to_yaml()))

if comm_rank == 0:
 relay.mpi.send(n,dest=1,tag=0,comm=comm_id)
else:
 relay.mpi.recv(n,source=0,tag=0,comm=comm_id)

show received node data on rank 1
if comm_rank == 1:
 print("[rank: {}] received: {}".format(comm_rank,n.to_yaml()))

	Output:

 [rank: 0] sending: [0, 1, 4, 9]
 [rank: 1] received: [0, 1, 4, 9]

Sum All Reduce

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

gather data all ranks
(ranks have nodes with compatible schemas)
n = conduit.Node(conduit.DataType.int64(4))
n_res = conduit.Node(conduit.DataType.int64(4))
data to reduce
vals = n.value()
for i in range(4):
 vals[i] = 1

relay.mpi.sum_all_reduce(n,n_res,comm=comm_id)
answer should be an array with each value == comm_size
show result on rank 0
if comm_rank == 0:
 print("[rank: {}] sum reduce result: {}".format(comm_rank,n_res.to_yaml()))

	Output:

 [rank: 0] sum reduce result: [2, 2, 2, 2]

Broadcast Using Schema

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

Note: example expects 2 mpi tasks

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

send a node and its schema from rank 0 to rank 1
n = conduit.Node()
if comm_rank == 0:
 # setup node to broadcast on rank 0
 n["a/data"] = 1.0
 n["a/more_data"] = 2.0
 n["a/b/my_string"] = "value"

show node data on rank 0
if comm_rank == 0:
 print("[rank: {}] broadcasting: {}".format(comm_rank,n.to_yaml()))

relay.mpi.broadcast_using_schema(n,root=0,comm=comm_id)

show received node data on rank 1
if comm_rank == 1:
 print("[rank: {}] received: {}".format(comm_rank,n.to_yaml()))

	Output:

 [rank: 0] broadcasting:
 a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

 [rank: 1] received:
 a:
 data: 1.0
 more_data: 2.0
 b:
 my_string: "value"

Broadcast

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

Note: example expects 2 mpi tasks

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

send data from a node on rank 0 to rank 1
(both ranks have nodes with compatible schemas)
n = conduit.Node(conduit.DataType.int64(4))
if comm_rank == 0:
 # setup node to send on rank 0
 vals = n.value()
 for i in range(4):
 vals[i] = i * i

show node data on rank 0
if comm_rank == 0:
 print("[rank: {}] broadcasting: {}".format(comm_rank,n.to_yaml()))

relay.mpi.broadcast_using_schema(n,root=0,comm=comm_id)

show received node data on rank 1
if comm_rank == 1:
 print("[rank: {}] received: {}".format(comm_rank,n.to_yaml()))

	Output:

 [rank: 0] broadcasting: [0, 1, 4, 9]

All Gather Using Schema

	Python Source:

import conduit
import conduit.relay as relay
import conduit.relay.mpi
from mpi4py import MPI

get a comm id from mpi4py world comm
comm_id = MPI.COMM_WORLD.py2f()
get our rank and the comm's size
comm_rank = relay.mpi.rank(comm_id)
comm_size = relay.mpi.size(comm_id)

n = conduit.Node(conduit.DataType.int64(4))
n_res = conduit.Node()
data to gather
vals = n.value()
for i in range(4):
 vals[i] = comm_rank

relay.mpi.all_gather_using_schema(n,n_res,comm=comm_id)
show result on rank 0
if comm_rank == 0:
 print("[rank: {}] all gather using schema result: {}".format(comm_rank,n_res.to_yaml()))

	Output:

 [rank: 0] all gather using schema result:
 - [0, 0, 0, 0]
 - [1, 1, 1, 1]

Blueprint

The flexibility of the Conduit Node allows it to be used to represent a wide range of scientific data. Unconstrained, this flexibly can lead to many application specific choices for common types of data that could potentially be shared between applications.

The goal of Blueprint is to help facilite a set of shared higher-level conventions for using Conduit Nodes to hold common simulation data structures. The Blueprint library in Conduit provides methods to verify if a Conduit Node instance conforms to known conventions, which we call protocols. It also provides property and transform methods that can be used on conforming Nodes.

For now, Blueprint is focused on conventions for two important types of data:

	Computational Meshes (protocol: mesh)

Many taxonomies and concrete mesh data models have been developed to allow computational meshes to be used in software. Blueprint’s conventions for representing mesh data were formed by negotiating with simulation application teams at LLNL and from a survey of existing projects that provide scientific mesh-related APIs including: ADIOS, Damaris, EAVL, MFEM, Silo, VTK, VTKm, and Xdmf. Blueprint’s mesh conventions are not a replacement for existing mesh data models or APIs. Our explicit goal is to outline a comprehensive, but small set of options for describing meshes in-core that simplifies the process of adapting data to several existing mesh-aware APIs.

	One-to-Many Relations (protocol: o2mrelation)

A one-to-many relation is a collection of arbitrarily grouped values that encode element associations from a source (“one”s) to a destination (“many”s) space.
These constructs are used in computational meshes to represent sparse material data, polygonal/polyhedral topologies, and other non-uniform mappings.

	Multi-Component Arrays (protocol: mcarray)

A multi-component array is a collection of fixed-sized numeric tuples.
They are used in the context computational meshes to represent coordinate data or field data, such as the three directional components of a 3D velocity field. There are a few common in-core data layouts used by several APIs to accept multi-component array data, these include: row-major vs column-major layouts, or the use of arrays of struct vs struct of arrays in C-style languages. Blueprint provides transforms that convert any multi-component array to these common data layouts.

	Tabular Data (protocol: table)

A collection of data represented as columns with the same number of rows.
Generally used to serialize data in a flattened form, specifically to and from CSV files.

	Mesh Blueprint
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topologies

	Mixed Shape Toplogies
	Element Windings

	Polygonal/Polyhedral Topologies
	Polygonal Topologies

	Polyhedral Topologies

	Material Sets
	Material Set Buffer Variants
	Uni-Buffer Material Sets

	Multi-Buffer Material Sets

	Material Set Indexing Variants
	Element-Dominant Material Sets

	Material-Dominant Material Sets

	Fields
	Topology Association for Field Values

	Species Sets

	Nesting Sets

	Adjacency Sets
	Adjacency Set Variants
	Pairwise Adjacency Sets

	Max-Share Adjacency Sets

	State

	Mesh Blueprint Examples
	basic
	Uniform

	Rectilinear

	Structured

	Tris

	Quads

	Polygons

	Tets

	Hexs

	Polyhedra

	braid

	spiral

	julia

	julia amr examples

	venn

	polytess

	polychain

	miscellaneous
	Outputting Meshes for Visualization

	Loading Meshes from Files

	Complete Uniform Example

	Expressions (Derived Fields)

	O2MRelation Blueprint
	Protocol

	Properties, Queries, and Transforms

	O2MRelation Examples

	MCArray Blueprint
	Protocol

	Properties and Transforms

	MCArray Examples

	Table Blueprint
	Protocol

	Table Examples

	Partitioning
	Options

	Selections
	Logical Selection

	Explicit Selection

	Range Selection

	Field Selection

Top Level Blueprint Interface

Blueprint provides a generic top level verify() method, which exposes the verify checks for all supported protocols.

bool conduit::blueprint::verify(const std::string &protocol,
 const Node &node,
 Node &info);

verify() returns true if the passed Node node conforms to the named protocol. It also provides details about the verification, including specific errors in the passed info Node.

// setup our candidate and info nodes
Node n, info;

//create an example mesh
conduit::blueprint::mesh::examples::braid("tets",
 5,5,5,
 n);
// check if n conforms
if(conduit::blueprint::verify("mesh",n,info))
 std::cout << "mesh verify succeeded." << std::endl;
else
 std::cout << "mesh verify failed!" << std::endl;

// show some of the verify details
info["coordsets"].print();

mesh verify succeeded.

valid: "true"
coords:
 type:
 valid: "true"
 info:
 - "mesh::coordset::explicit: 'type' has valid value 'explicit'"
 - "mesh::coordset::explicit: 'values' is an mcarray"
 values:
 valid: "true"
 valid: "true"

Methods for specific protocols are grouped in namespaces:

// setup our candidate and info nodes
Node n, verify_info, mem_info;

// create an example mcarray
conduit::blueprint::mcarray::examples::xyz("separate",5,n);

std::cout << "example 'separate' mcarray " << std::endl;
n.print();
n.info(mem_info);
mem_info.print();

// check if n conforms
if(conduit::blueprint::verify("mcarray",n,verify_info))
{
 // check if our mcarray has a specific memory layout
 if(!conduit::blueprint::mcarray::is_interleaved(n))
 {
 // copy data from n into the desired memory layout
 Node xform;
 conduit::blueprint::mcarray::to_interleaved(n,xform);
 std::cout << "transformed to 'interleaved' mcarray " << std::endl;
 xform.print_detailed();
 xform.info(mem_info);
 mem_info.print();
 }
}

example 'separate' mcarray

x: [1.0, 1.0, 1.0, 1.0, 1.0]
y: [2.0, 2.0, 2.0, 2.0, 2.0]
z: [3.0, 3.0, 3.0, 3.0, 3.0]

mem_spaces:
 0x7f83a7404e10:
 path: "x"
 type: "allocated"
 bytes: 40
 0x7f83a7404f10:
 path: "y"
 type: "allocated"
 bytes: 40
 0x7f83a7405070:
 path: "z"
 type: "allocated"
 bytes: 40
total_bytes_allocated: 120
total_bytes_mmaped: 0
total_bytes_compact: 120
total_strided_bytes: 120

transformed to 'interleaved' mcarray

{
 "x":
{
"dtype":"float64",
"number_of_elements": 5,
"offset": 0,
"stride": 24,
"element_bytes": 8,
"endianness": "little"
, "value": [1.0, 1.0, 1.0, 1.0, 1.0]},
 "y":
{
"dtype":"float64",
"number_of_elements": 5,
"offset": 8,
"stride": 24,
"element_bytes": 8,
"endianness": "little"
, "value": [2.0, 2.0, 2.0, 2.0, 2.0]},
 "z":
{
"dtype":"float64",
"number_of_elements": 5,
"offset": 16,
"stride": 24,
"element_bytes": 8,
"endianness": "little"
, "value": [3.0, 3.0, 3.0, 3.0, 3.0]}
}

mem_spaces:
 0x7f83a7406b60:
 path: ""
 type: "allocated"
 bytes: 120
total_bytes_allocated: 120
total_bytes_mmaped: 0
total_bytes_compact: 120
total_strided_bytes: 312

Mesh Blueprint

The Mesh Blueprint is a set of hierarchical conventions to describe mesh-based
simulation data both in-memory and via files. This section provides details
about the Mesh Blueprint. Lots of them.

These docs provide the main reference for all of the components of
the Mesh Blueprint protocol and details about Mesh Blueprint Examples
that are included in the Conduit Blueprint Library.

Conduit docs don’t have a Mesh Blueprint tutorial yet, if you are looking to
wrap your mind around the basic mechanics of describing a mesh:

	The Ascent tutorial includes section on creating Meshes using Conduit [https://ascent.readthedocs.io/en/latest/Tutorial_Intro_Conduit_Blueprint.html]. This is the best reference for getting started and includes C++ and Python code examples.

	The Complete Uniform Example at the end of this section shows you how to create and save a uniform grid to a file which VisIt and Ascent’s Replay utility [https://ascent.readthedocs.io/en/latest/Utilities.html?highlight=replay#replay] can read.

	The Mesh Blueprint Examples section details functions that to generate several flavors of exemplar meshes.

Protocol

The Blueprint protocol defines a single-domain computational mesh using one or more Coordinate Sets (via child coordsets), one or more Topologies (via child topologies), zero or more Materials Sets (via child matsets), zero or more Fields (via child fields), optional Adjacency Set information (via child adjsets), and optional State information (via child state).
The protocol defines multi-domain meshes as Objects that contain zero or more single-domain mesh entries.

Note

Since the multi-domain protocol accepts zero or more single-domain mesh entries, an empty Conduit Node is
considered a valid multi-domain mesh. The change to accept an empty Node was introduced in Conduit 0.8.0.
To check if you have a mesh with data, you can screen with dtype().is_empty(), or by using mesh blueprint property
methods (i.e. number_of_domains()).

For simplicity, the descriptions below are structured relative to a single-domain mesh Object that contains one Coordinate Set named coords, one Topology named topo, and one Material Set named matset.

Coordinate Sets

To define a computational mesh, the first required entry is a set of spatial coordinate tuples that can underpin a mesh topology.

The mesh blueprint protocol supports sets of spatial coordinates from three coordinate systems:

	Cartesian: {x,y,z}

	Cylindrical: {r,z}

	Spherical: {r,theta,phi}

The mesh blueprint protocol supports three types of Coordinate Sets: uniform, rectilinear, and explicit. To conform to the protocol, each entry under coordsets must be an Object with entries from one of the cases outlined below:

	uniform

An implicit coordinate set defined as the cartesian product of i,j,k dimensions starting at an origin (ex: {x,y,z}) using a given spacing (ex: {dx,dy,dz}).

	Cartesian

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j,k}

	coordsets/coords/origin/{x,y,z} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dx,dy,dz} (optional, default = {1.0, 1.0, 1.0})

	Cylindrical

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,z} (optional, default = {0.0, 0.0})

	coordsets/coords/spacing/{dr,dz} (optional, default = {1.0, 1.0})

	Spherical

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,theta,phi} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dr,dtheta, dphi} (optional, default = {1.0, 1.0, 1.0})

	rectilinear

An implicit coordinate set defined as the cartesian product of passed coordinate arrays.

	Cartesian

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{x,y,z}

	Cylindrical:

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{r,z}

	Spherical

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{r,theta,phi}

	explicit

An explicit set of coordinates, which includes values that conforms to the mcarray blueprint protocol.

	Cartesian

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{x,y,z}

	Cylindrical

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,z}

	Spherical

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,theta,phi}

Note

In all of the coordinate space definitions outlined above, spherical coordinates adhere to the definitions of
theta/phi used in the physics and engineering domains. Specifically, this means that theta refers to
the polar angle of the coordinate (i.e. the angle from the +Z cartesian axis) and phi refers to the azimuthal
angle of the coordinate (i.e. the angle from the +X cartesian axis). The figure below most succinctly describes
these conventions:

[image: _images/spherical_coordinates_render.png]

Figure of spherical coordinate conventions (courtesy of Wikipedia [https://en.wikipedia.org/wiki/Spherical_coordinate_system])

Toplogies

The next entry required to describe a computational mesh is its topology. To conform to the protocol, each entry under topologies must be an Object that contains one of the topology descriptions outlined below.

Topology Nomenclature

The mesh blueprint protocol describes meshes in terms of vertices, edges, faces, and elements.

The following element shape names are supported:

	Name

	Geometric Type

	Specified By

	point

	point

	an index to a single coordinate tuple

	line

	line

	indices to 2 coordinate tuples

	tri

	triangle

	indices to 3 coordinate tuples

	quad

	quadrilateral

	indices to 4 coordinate tuples

	tet

	tetrahedron

	indices to 4 coordinate tuples

	hex

	hexahedron

	indices to 8 coordinate tuples

	polygonal

	polygon

	indices to N end-to-end coordinate tuples

	polyhedral

	polyhedron

	indices to M polygonal faces

Association with a Coordinate Set

Each topology entry must have a child coordset with a string that references a valid coordinate set by name.

	topologies/topo/coordset: “coords”

Optional association with a Grid Function

Topologies can optionally include a child grid_function with a string that references a valid field by name.

	topologies/topo/grid_function: “gf”

Implicit Topology

The mesh blueprint protocol accepts four implicit ways to define a topology on a coordinate set. The first simply uses all the points in a given coordinate set and the rest define grids of elements on top of a coordinate set. For the grid cases with a coordinate set with 1D coordinate tuples, line elements are used, for sets with 2D coordinate tuples quad elements are used, and for 3D coordinate tuples hex elements are used.

	points: An implicit topology using all of the points in a coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “points”

	uniform: An implicit topology that defines a grid of elements on top of a uniform coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “uniform”

	topologies/topo/elements/origin/{i,j,k} (optional, default = {0,0,0})

	rectilinear: An implicit topology that defines a grid of elements on top of a rectilinear coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “rectilinear”

	topologies/topo/elements/origin/{i,j,k} (optional, default = {0,0,0})

	structured: An implicit topology that defines a grid of elements on top of an explicit coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type = “structured”

	topologies/topo/elements/dims/{i,j,k}

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

Explicit (Unstructured) Topology

Single Shape Topologies

For topologies using a homogenous collection of element shapes (eg: all hexs), the topology can be specified by
a connectivity array and a shape name.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “unstructured”

	topologies/topo/elements/shape: (shape name)

	topologies/topo/elements/connectivity: (index array)

Mixed Shape Toplogies

For topologies using a non-homogenous collections of element shapes (eg: hexs and tets), the topology can
specified using a single shape topology for each element shape.

	list - A Node in the List role, that contains a children that conform to the Single Shape Topology case.

	object - A Node in the Object role, that contains a children that conform to the Single Shape Topology case.

Note

Future version of the mesh blueprint will expand support to include mixed elements types in a single array with related
index arrays.

Element Windings

The mesh blueprint does yet not have a prescribed winding convention (a way to order the association of vertices to elements) or more generally to
outline a topology’s dimensional cascade (how elements are related to faces, faces are related to edges, and edges are related to vertices.)

This is a gap we are working to solve in future versions of the mesh blueprint, with a goal of providing transforms to
help convert between different winding or cascade schemes.

That said VTK (and VTK-m) winding conventions are assumed by MFEM, VisIt, or Ascent when using Blueprint data.

Polygonal/Polyhedral Topologies

The polygonal and polyhedral topology shape types are structurally
identical to the other explicit topology shape types (see the Single Shape Topologies
section above), but the contents of their elements sections look slightly different.
In particular, these sections are structured as o2mrelation objects that map elements
(the ones) to their subelement constituents (the many). For polyhedral topologies,
these constituents reside in an additional subelements section that specifies
the polyhedral faces in a format identical to elements in a polygonal schema.

Polygonal Topologies

The schema for a polygonal shape topology is as follows:

	topologies/topo/coordset: “coords”

	topologies/topo/type: “unstructured”

	topologies/topo/elements: (o2mrelation object)

	topologies/topo/elements/shape: “polygonal”

	topologies/topo/elements/connectivity: (index array)

It’s important to note that the elements/connectivity path defines the vertex
index sequences (relative to coordset) for each element in the topology. These
vertex sequences must be arranged end-to-end (i.e. such that (v[i], v[i+1])
defines an edge) relative to their container polygonal elements.

The following diagram illustrates a simple polygonal topology:

#
4--------5
|`-- |
e1 | `. | e0
| --.|
7--------6
#

topologies:
 topology:
 coordset: coords
 type: unstructured
 elements:
 shape: polygonal
 connectivity: [4, 6, 5, 7, 6, 4]
 sizes: [3, 3]
 offsets: [0, 3]

Polyhedral Topologies

The schema for a polyhedral shape topology is as follows:

	topologies/topo/coordset: “coords”

	topologies/topo/type: “unstructured”

	topologies/topo/elements: (o2mrelation object)

	topologies/topo/elements/shape: “polyhedral”

	topologies/topo/elements/connectivity: (index array)

	topologies/topo/subelements: (o2mrelation object)

	topologies/topo/subelements/shape: (shape name)

	topologies/topo/subelements/connectivity: (index array)

An important nuance to the structure of a polyhedral shape topology is that
the elements/connectivity path indexes into the subelements object to list
the many faces associated with each one polyhedron. Similarly, the
subelements/connectivity path indexes into the coordset path to list the
many vertices associated with each one polyhedral face. There is no assumed
ordering for constituent polyhedral faces relative to their source polyhedra.

The following diagram illustrates a simple polyhedral topology:

#
0
/|\
/ | \ <- e0
/ | \
/_.-3-._\
1., | ,.4
\ `'2'` /
\ | /
e1 -> \ | /
\|/
5
#|

topologies:
 topology:
 coordset: coords
 type: unstructured
 elements:
 shape: polyhedral
 connectivity: [0, 1, 2, 3, 4, 0, 5, 6, 7, 8]
 sizes: [5, 5]
 offsets: [0, 5]
 subelements:
 shape: polygonal
 connectivity: [1, 2, 4, 3, 1, 2, 0, 2, 4, 0, 4, 3, 0, 3, 1, 0, 1, 2, 5, 2, 4, 5, 4, 3, 5, 3, 1, 5]
 sizes: [4, 3, 3, 3, 3, 3, 3, 3, 3]
 offsets: [0, 4, 7, 10, 13, 16, 19, 22, 25]

Material Sets

Materials Sets contain material name and volume fraction information defined over a specified mesh topology.

A material set is a type of o2mrelation that houses per-material, per-element volume fractions that are defined over a referenced source topology.
Each material set conforms to a schema variant based on:

	The layout of its per-material buffers.

	The indexing scheme used to associate volume fractions with topological elements.

The options for each of these variants are detailed in the following sections.

Material Set Buffer Variants

Each material set follows one of two variants based on the presented structure of its volume fractions.
These variants cover volume fractions presented in a single, unified buffer (called uni-buffer presentation) and in multiple, per-material buffers (called multi-buffer presentation).
Both of these variants and their corresponding schemas are outlined in the subsections below.

Uni-Buffer Material Sets

A uni-buffer material set is one that presents all of its volume fraction data in a single data buffer.
In this case, the material set schema must include this volume fraction data buffer, a parallel buffer associating each volume with a material identifier, and an Object that maps human-readable material names to unique integer material identifiers.
Additionally, the top-level of this schema is an o2mrelation that sources from the volume fraction/material identifier buffers and targets the material topology.
To conform to protocol, each matsets child of this type must be an Object that contains the following information:

	matsets/matset/topology: “topo”

	matsets/matset/material_map: (object with integer leaves)

	matsets/matset/material_ids: (integer array)

	matsets/matset/volume_fractions: (floating-point array)

The following diagram illustrates a simple uni-buffer material set example:

z0 z1 z2
+--------+--------+--------+
| a0 | a1 ___/| |
|___-----|---- | b2 |
| b0 | b1 | |
+--------+--------+--------+
#

matsets:
 matset:
 topology: topology
 material_map:
 a: 1
 b: 2
 c: 0
 material_ids: [0, 1, 2, 2, 2, 0, 1, 0]
 volume_fractions: [0, a0, b2, b1, b0, 0, a1, 0]
 sizes: [2, 2, 1]
 offsets: [0, 2, 4]
 indices: [1, 4, 6, 3, 2]

Multi-Buffer Material Sets

A multi-buffer material set is a material set variant wherein the volume fraction data is split such that one buffer exists per material.
The schema for this variant dictates that each material be presented as an Object entry of the volume_fractions field with the material name as the entry key and the material volume fractions as the entry value.
Multi-buffer material sets also support an optional material_map, which is an Object that maps human-readable material names to unique integer material identifiers.
If omitted, the map from material names to ids is inferred from the order of the material names in the volume_fractions node.

Optionally, the value for each such entry can be specified as an o2mrelation instead of a flat array to enable greater specification flexibility.
To conform to protocol, each matsets child of this type must be an Object that contains the following information:

	matsets/matset/topology: “topo”

	matsets/matset/volume_fractions: (object)

	matsets/matset/material_map: (optional, object with integer leaves)

The following diagram illustrates a simple multi-buffer material set example:

z0 z1 z2
+--------+--------+--------+
| a0 | a1 ___/| |
|___-----|---- | b2 |
| b0 | b1 | |
+--------+--------+--------+
#

matsets:
 matset:
 topology: topology
 volume_fractions:
 a:
 values: [0, 0, 0, a1, 0, a0]
 indices: [5, 3]
 b:
 values: [0, b0, b2, b1, 0]
 indices: [1, 3, 2]
 material_map: # (optional)
 a: 0
 b: 1

Material Set Indexing Variants

Material sets can also vary in how volume fractions are associated with topological elements.
This associative variance leads to two additional schema variants: element-dominant (elements/volumes have the same ordering) and material-dominant (elements/volumes have independent orderings).
Both of these variants and their corresponding schemas are outlined in the subsections below.

Element-Dominant Material Sets

In an element-dominant material set, the volume fraction data order matches the topological element order.
In other words, the volume fraction group at i (e.g. matset/volume_fractions/mat[i]) contains the volume fraction data for topological element i.
This variant is assumed in all material sets that don’t have an element_ids child.

The following diagram illustrates a simple element-dominant material set example:

z0 z1 z2
+--------+--------+--------+
| a0 | a1 ___/|___ c2 |
|___-----|---- | ----|
| b0 | b1 | b2 |
+--------+--------+--------+
#

matsets:
 matset:
 topology: topology
 volume_fractions:
 a: [a0, a1, 0]
 b: [b0, b1, b2]
 c: [0, 0, c2]
 material_map: # (optional)
 a: 0
 b: 1
 c: 2

Material-Dominant Material Sets

In a material-dominant material set, the orders for the volume fractions and topological elements are mismatched and need to be bridged via indirection arrays.
For these schemas, the element_ids field hosts these indirection arrays per material (with just one indirection array for uni-buffer material sets).
In explicit terms, the material-dominant volume fraction group at i (e.g. matset/volume_fractions/mat[i]) contains the volume fraction data for the indirected topological element i (e.g. matset/element_ids/mat[i]).
Complementary to the element-dominant variant, the material-dominant variant applies to all material sets that have an element_ids child.

The following diagram illustrates a simple material-dominant material set example:

z0 z1 z2
+--------+--------+--------+
| a0 | a1 ___/|___ c2 |
|___-----|---- | ----|
| b0 | b1 | b2 |
+--------+--------+--------+
#

matsets:
 matset:
 topology: topology
 volume_fractions:
 a: [a0, a1]
 b: [b0, b1, b2]
 c: [c2]
 element_ids:
 a: [0, 1]
 b: [0, 1, 2]
 c: [2]
 material_map: # (optional)
 a: 0
 b: 1
 c: 2

Fields

Fields are used to hold simulation state arrays associated with a mesh topology and (optionally) a mesh material set.

Each field entry can define an mcarray of material-independent values and/or an mcarray of per-material values.
These data arrays must be specified alongside a source space, which specifies the space over which the field values are defined (i.e. a topology for material-independent values and a material set for material-dependent values).
Minimally, each field entry must specify one of these data sets, the source space for the data set, an association type (e.g. per-vertex, per-element, or per-grid-function-entity), and a volume scaling type (e.g. volume-dependent, volume-independent).
Thus, to conform to protocol, each entry under the fields section must be an Object that adheres to one of the following descriptions:

	Material-Independent Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/topology: “topo”

	fields/field/values: (mcarray)

	Material-Dependent Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/matset: “matset”

	fields/field/matset_values: (mcarray)

	Mixed Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/topology: “topo”

	fields/field/values: (mcarray)

	fields/field/matset: “matset”

	fields/field/matset_values: (mcarray)

Topology Association for Field Values

For implicit topologies, the field values are associated with the topology by fast varying logical dimensions starting with i, then j, then k.

For explicit topologies, the field values are associated with the topology by assuming the order of the field values matches the order the elements are defined in the topology.

Species Sets

Species Sets are a means of representing multi-dimensional per-material quantities, most commonly per-material substance fractions.

Individual Species Sets are entries in the specsets section of the Blueprint hierarchy, and these entries are formatted in much the same way as fields entries that describe per-material, multi-dimensional fields.
Just as with this class of fields entries, each specsets entry must specify the material set over which it is defined and enumerate its values within an mcarray that’s organized first by materials (shallower level of nesting) and then by species components (deeper level of nesting).
Additionally, like field entries, each specsets item must indicate a volumetric scaling type (e.g. volume-dependent, volume-independent).
To put it in short, each entry in the specsets section of the Blueprint hierarchy must be an Object that follows this template:

	specsets/specset/volume_dependent: “true” | “false”

	specsets/specset/matset: “matset”

	specsets/specset/matset_values: (mcarray)

Nesting Sets

Nesting Sets are used to represent the nesting relationships between different domains in multi-domain mesh environments. Most commonly, this subset of the Blueprint specification is used for AMR (adaptive mesh refinement) meshes.

Each entry in the Nesting Sets section contains an independent set of nesting relationships between domains in the described mesh.
On an individual basis, a nesting set contains a source topology, an element association, and a list of nesting windows.
The windows for a particular nesting set describe the topological nesting pattern for a paired set of domains, which includes the ID of the partnered domain, the type of the partnered domain (parent or child), the per-dimension zone ratios of this domain relative to the partnered domain, and the self-relative dimensions and origin (provided in terms of local domain coordinates) of the nesting relationship.
The Blueprint schema for each entry in the nestsets section matches the following template:

	nestsets/nestset/association: “vertex” | “element”

	nestsets/nestset/topology: “topo”

	nestsets/nestset/windows/window/domain_id: (integer)

	nestsets/nestset/windows/window/domain_type: “parent” | “child”

	nestsets/nestset/windows/window/ratio/{i, j, k}

	nestsets/nestset/windows/window/origin/{i, j, k}

	nestsets/nestset/windows/window/dims/{i, j, k}

Note

Many structured AMR codes use global coordinate identifiers when specifying
each window’s origin. Such coordinates must be transformed to domain-local
coordinates to be Blueprint-compliant. Given the global structured origin of
a window’s associated topology topo_origin (which isn’t in the Blueprint,
but is likely stored somewhere in the client code), the global origin can be
transformed into a local origin like so:

// 'window_origin': starts out as a global index, but is transformed into
// a domain-local index through this procedure
conduit::Node &window_origin = // path to nestset/windows/window/origin
conduit::Node &topo_origin = // loaded from client code; {i, j, k} structure

conduit::NodeIterator origin_it = window_origin.children();
while(origin_it.has_next())
{
 conduit::Node &window_dim = origin_it.next();
 conduit::Node &topo_dim = topo_origin[origin_it.name()];

 conduit::int64 new_dim_val = window_dim.to_int64() - topo_dim.to_int64();
 conduit::Node &new_dim(conduit::DataType::int64(1), &new_dim_val, true);
 new_dim.to_data_type(window_dim.dtype().id(), window_dim);
}

Each domain that contains a Nesting Sets section must also update its State section to include the domain’s global nesting level.
This additional requirement adds the follow constraint to the state section:

	state/level_id: (integer)

Note

The Nesting Sets section currently only supports nesting specifications for
structured topologies. There are plans to extend this feature to support
unstructured topologies in future versions of Conduit.

Adjacency Sets

Adjacency Sets are used to outline the shared geometry between subsets of domains in multi-domain meshes.

Each entry in the Adjacency Sets section is meant to encapsulate a set of adjacency information shared between domains.
Each individual adjacency set contains a source topology, an element association, and a list of adjacency groups.
An adjacency set’s contained groups describe adjacency information shared between subsets of domains, which is represented by a subset of adjacent neighbor domains IDs and a list of shared element IDs.
The fully-defined Blueprint schema for the adjsets entries looks like the following:

	adjsets/adjset/association: “vertex” | “element”

	adjsets/adjset/topology: “topo”

	adjsets/adjset/groups/group/neighbors: (integer array)

	adjsets/adjset/groups/group/values: (integer array)

It’s important to note that the groups in an Adjacency Set associate across domains based on their names (e.g. domain0/adjsets/adjset/groups/1 will be associated with domain*/adjsets/adjset/groups/1).
For data publishers that are agnostic about group names, the conduit::blueprint::mesh::utils::adjset::canonicalize utility method can be used to assign cross-domain matching names:

conduit::Node &unidomain_mesh = // loaded from the client code
conduit::Node &unidomain_adjset = unidomain_mesh["adjsets"].child(0);
conduit::Node &unidomain_domid = unidomain_mesh["state/domain_id"];

unidomain_domid.print();
// > 0
unidomain_adjset["groups"].print();
// > a:
// > neighbors: [1, 2, 3]
// > values: [...]
// > b:
// > neighbors: [1]
// > values: [...]
// > c:
// > neighbors: [2]
// > values: [...]

conduit::bleuprint::mesh::utils::adjset::canonicalize(unidomain_adjset);

unidomain_adjset["groups"].print();
// > group_0_1_2_3:
// > neighbors: [1, 2, 3]
// > values: [...]
// > group_0_1:
// > neighbors: [1]
// > values: [...]
// > group_0_2:
// > neighbors: [2]
// > values: [...]

Adjacency Set Variants

There’s a great deal of flexibility in how the adjacency groups of an Adjacency Set can be constructed.
Blueprint Mesh contains detection and transformation functions for the most commonly targeted formats.
The two variants currently supported are pairwise and max-share.

Pairwise Adjacency Sets

A pairwise adjacency set is one that contains groups that represent the relationship between the host domain and a single neighboring domain (i.e. domain “pairs”).

The following diagram illustrates a simple pairwise material set example:

domain0 domain1
+--------++--------+
| v01||v11 |
| || |
| v00||v10 |
+--------++--------+
+--------+
| v20|
| |
| v21|
+--------+
domain2

domain0:
 state:
 domain_id: 0
 adjsets:
 adjset:
 association: vertex
 topology: topology
 groups:
 domain_0_1:
 neighbors: [1]
 values: [v00, v01]
 domain_0_2:
 neighbors: [2]
 values: [v00]

Max-Share Adjacency Sets

A max-share adjacency set is one with groups that “maximally share” index data.
In other words, these adjacency sets present index data so that it isn’t duplicated between groups.

The following diagram illustrates a simple pairwise material set example:

domain0 domain1
+--------++--------+
| v01||v11 |
| || |
| v00||v10 |
+--------++--------+
+--------+
| v20|
| |
| v21|
+--------+
domain2

domain0:
 state:
 domain_id: 0
 adjsets:
 adjset:
 association: vertex
 topology: topology
 groups:
 domain_0_1_2:
 neighbors: [1, 2]
 values: [v00]
 domain_0_1:
 neighbors: [1]
 values: [v01]

State

Optional state information is used to provide metadata about the mesh. While the mesh blueprint is focused on describing a single domain of a domain decomposed mesh, the state info can be used to identify a specific mesh domain in the context of a domain decomposed mesh.

To conform, the state entry must be an Object and can have the following optional entries:

	state/time: (number)

	state/cycle: (number)

	state/domain_id: (integer)

Mesh Blueprint Examples

The C++ conduit::blueprint::mesh::examples namespace and the Python conduit.blueprint.mesh.examples module provide
functions that generate example Mesh Blueprint data. For details on how to write these data sets to files, see the unit
tests that exercise these examples in src/tests/blueprint/t_blueprint_mesh_examples.cpp and the
mesh output example below. This section outlines the examples that demonstrate
the most commonly used mesh schemas.

basic

The simplest of the mesh examples, basic(), generates an homogenous example mesh with a configurable element
representation/type (see the mesh_type table below) spanned by a single scalar field that contains a unique
identifier for each mesh element. The function that needs to be called to generate an example of this type has the
following signature:

conduit::blueprint::mesh::examples::basic(const std::string &mesh_type, // element type/dimensionality
 index_t nx, // number of grid points along x
 index_t ny, // number of grid points along y
 index_t nz, // number of grid points along z (3d only)
 Node &res); // result container

The element representation, type, and dimensionality are all configured through the mesh_type argument. The
supported values for this parameter and their corresponding effects are outlined in the table below:

	Mesh Type

	Dimensionality

	Coordset Type

	Topology Type

	Element Type

	uniform

	2d/3d

	implicit

	implicit

	quad/hex

	rectilinear

	2d/3d

	implicit

	implicit

	quad/hex

	structured

	2d/3d

	explicit

	implicit

	quad/hex

	tris

	2d

	explicit

	explicit

	tri

	quads

	2d

	explicit

	explicit

	quad

	polygons

	2d

	explicit

	explicit

	polygon

	tets

	3d

	explicit

	explicit

	tet

	hexs

	3d

	explicit

	explicit

	hex

	polyhedra

	3d

	explicit

	explicit

	polyhedron

The remainder of this section demonstrates each of the different basic() mesh types, outlining
each type with a simple example that (1) presents the generating call, (2) shows the results of the
call in Blueprint schema form, and (3) displays the corresponding graphical rendering of this schema.

Uniform

	Usage Example

// create container node
Node mesh;
// generate simple uniform 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("uniform", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "uniform"
 dims:
 i: 3
 j: 3
 origin:
 x: -10.0
 y: -10.0
 spacing:
 dx: 10.0
 dy: 10.0
topologies:
 mesh:
 type: "uniform"
 coordset: "coords"
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]

	Visual

[image: _images/basic_hex_2d_render.png]

Pseudocolor plot of basic (mesh type ‘uniform’)

Rectilinear

	Usage Example

// create container node
Node mesh;
// generate simple rectilinear 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("rectilinear", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "rectilinear"
 values:
 x: [-10.0, 0.0, 10.0]
 y: [-10.0, 0.0, 10.0]
topologies:
 mesh:
 type: "rectilinear"
 coordset: "coords"
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]

	Visual

[image: _images/basic_hex_2d_render.png]

Pseudocolor plot of basic (mesh type ‘rectilinear’)

Structured

	Usage Example

// create container node
Node mesh;
// generate simple structured 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("structured", 3, 3, 1, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "structured"
 coordset: "coords"
 elements:
 dims:
 i: 2
 j: 2
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]

	Visual

[image: _images/basic_hex_2d_render.png]

Pseudocolor plot of basic (mesh type ‘structured’)

Tris

	Usage Example

// create container node
Node mesh;
// generate simple explicit tri-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("tris", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tri"
 connectivity: [0, 3, 4, 0, 1, 4, 1, 4, 5, 1, 2, 5, 3, 6, 7, 3, 4, 7, 4, 7, 8, 4, 5, 8]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

	Visual

[image: _images/basic_tet_2d_render.png]

Pseudocolor plot of basic (mesh type ‘tris’)

Quads

	Usage Example

// create container node
Node mesh;
// generate simple explicit quad-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("quads", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "quad"
 connectivity: [0, 3, 4, 1, 1, 4, 5, 2, 3, 6, 7, 4, 4, 7, 8, 5]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]

	Visual

[image: _images/basic_hex_2d_render.png]

Pseudocolor plot of basic (mesh type ‘quads’)

Polygons

	Usage Example

// create container node
Node mesh;
// generate simple explicit poly-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("polygons", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "polygonal"
 sizes: [4, 4, 4, 4]
 connectivity: [0, 3, 4, 1, 1, 4, 5, 2, 3, 6, 7, 4, 4, 7, 8, 5]
 offsets: [0, 4, 8, 12]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0]

	Visual

[image: _images/basic_hex_2d_render.png]

Pseudocolor plot of basic (mesh type ‘polygons’)

Tets

	Usage Example

// create container node
Node mesh;
// generate simple explicit tri-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("tets", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 z: [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 4, 1, 13, 0, 3, 4, 13, 0, 12, 3, 13, 0, 9, 12, 13, 0, 10, 9, 13, 0, 1, 10, 13, 1, 5, 2, 14, 1, 4, 5, 14, 1, 13, 4, 14, 1, 10, 13, 14, 1, 11, 10, 14, 1, 2, 11, 14, 3, 7, 4, 16, 3, 6, 7, 16, 3, 15, 6, 16, 3, 12, 15, 16, 3, 13, 12, 16, 3, 4, 13, 16, 4, 8, 5, 17, 4, 7, 8, 17, 4, 16, 7, 17, 4, 13, 16, 17, 4, 14, 13, 17, 4, 5, 14, 17, 9, 13, 10, 22, 9, 12, 13, 22, 9, 21, 12, 22, 9, 18, 21, 22, 9, 19, 18, 22, 9, 10, 19, 22, 10, 14, 11, 23, 10, 13, 14, 23, 10, 22, 13, 23, 10, 19, 22, 23, 10, 20, 19, 23, 10, 11, 20, 23, 12, 16, 13, 25, 12, 15, 16, 25, 12, 24, 15, 25, 12, 21, 24, 25, 12, 22, 21, 25, 12, 13, 22, 25, 13, 17, 14, 26, 13, 16, 17, 26, 13, 25, 16, 26, 13, 22, 25, 26, 13, 23, 22, 26, 13, 14, 23, 26]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0]

	Visual

[image: _images/basic_tet_3d_render.png]

Pseudocolor plot of basic (mesh type ‘tets’)

Hexs

	Usage Example

// create container node
Node mesh;
// generate simple explicit quad-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("hexs", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 z: [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "hex"
 connectivity: [0, 1, 4, 3, 9, 10, 13, 12, 1, 2, 5, 4, 10, 11, 14, 13, 3, 4, 7, 6, 12, 13, 16, 15, 4, 5, 8, 7, 13, 14, 17, 16, 9, 10, 13, 12, 18, 19, 22, 21, 10, 11, 14, 13, 19, 20, 23, 22, 12, 13, 16, 15, 21, 22, 25, 24, 13, 14, 17, 16, 22, 23, 26, 25]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

	Visual

[image: _images/basic_hex_3d_render.png]

Pseudocolor plot of basic (mesh type ‘hexs’)

Polyhedra

	Usage Example

// create container node
Node mesh;
// generate simple explicit poly-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("polyhedra", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0]
 y: [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 z: [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
topologies:
 mesh:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "polyhedral"
 connectivity: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 10, 11, 3, 12, 13, 14, 15, 16, 9, 17, 18, 12, 19, 5, 20, 21, 22, 23, 24, 10, 25, 26, 27, 21, 28, 15, 22, 29, 30, 31, 32, 19, 27, 33, 34, 29, 35]
 sizes: [6, 6, 6, 6, 6, 6, 6, 6]
 offsets: [0, 6, 12, 18, 24, 30, 36, 42]
 subelements:
 shape: "polygonal"
 connectivity: [0, 3, 4, 1, 0, 1, 10, 9, 1, 4, 13, 10, 4, 3, 12, 13, 3, 0, 9, 12, 9, 10, 13, 12, 1, 4, 5, 2, 1, 2, 11, 10, 2, 5, 14, 11, 5, 4, 13, 14, 10, 11, 14, 13, 3, 6, 7, 4, 4, 7, 16, 13, 7, 6, 15, 16, 6, 3, 12, 15, 12, 13, 16, 15, 4, 7, 8, 5, 5, 8, 17, 14, 8, 7, 16, 17, 13, 14, 17, 16, 9, 10, 19, 18, 10, 13, 22, 19, 13, 12, 21, 22, 12, 9, 18, 21, 18, 19, 22, 21, 10, 11, 20, 19, 11, 14, 23, 20, 14, 13, 22, 23, 19, 20, 23, 22, 13, 16, 25, 22, 16, 15, 24, 25, 15, 12, 21, 24, 21, 22, 25, 24, 14, 17, 26, 23, 17, 16, 25, 26, 22, 23, 26, 25]
 sizes: [4, 4]
 offsets: [0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140]
fields:
 field:
 association: "element"
 topology: "mesh"
 volume_dependent: "false"
 values: [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

	Visual

[image: _images/basic_hex_3d_render.png]

Pseudocolor plot of basic (mesh type ‘polyhedra’)

braid

[image: _images/braid_render.png]

Pseudocolor plot of a 3D braid example braid field

The braid() generates example meshes that cover the range of coordinate sets and topologies supported by the Mesh Blueprint.

The example datasets include a vertex-centered scalar field braid, an element-centered scalar field radial and
a vertex-centered vector field vel.

conduit::blueprint::mesh::examples::braid(const std::string &mesh_type,
 index_t nx,
 index_t ny,
 index_t nz,
 Node &res);

Here is a list of valid strings for the mesh_type argument:

	Mesh Type

	Description

	uniform

	2d or 3d uniform grid
(implicit coords, implicit topology)

	rectilinear

	2d or 3d rectilinear grid
(implicit coords, implicit topology)

	structured

	2d or 3d structured grid
(explicit coords, implicit topology)

	point

	2d or 3d unstructured mesh of point elements
(explicit coords, explicit topology)

	lines

	2d or 3d unstructured mesh of line elements
(explicit coords, explicit topology)

	tris

	2d unstructured mesh of triangle elements
(explicit coords, explicit topology)

	quads

	2d unstructured mesh of quadrilateral elements
(explicit coords, explicit topology)

	tets

	3d unstructured mesh of tetrahedral elements
(explicit coords, explicit topology)

	hexs

	3d unstructured mesh of hexahedral elements
(explicit coords, explicit topology)

nx, ny, nz specify the number of elements in the x, y, and z directions.

nz is ignored for 2d-only examples.

The resulting data is placed the Node res, which is passed in via reference.

spiral

[image: _images/spiral_render.png]

Pseudocolor and Contour plots of the spiral example dist field.

The sprial() function generates a multi-domain mesh composed of 2D square
domains with the area of successive fibonacci numbers. The result estimates the
Golden spiral [https://en.wikipedia.org/wiki/Golden_spiral].

The example dataset provides a vertex-centered scalar field dist that estimates the distance from
each vertex to the Golden spiral.

conduit::blueprint::mesh::examples::spiral(conduit::index_t ndomains,
 Node &res);

ndomains specifies the number of domains to generate, which is also the number of entries from fibonacci sequence used.

The resulting data is placed the Node res, which is passed in via reference.

julia

[image: _images/julia_render.png]

Pseudocolor plot of the julia example iter field

The julia() function creates a uniform grid that visualizes
Julia set fractals [https://en.wikipedia.org/wiki/Julia_set].

The example dataset provides an element-centered scalar field iter that represents the number of iterations
for each point tested or zero if not found in the set.

conduit::blueprint::mesh::examples::julia(index_t nx,
 index_t ny,
 float64 x_min,
 float64 x_max,
 float64 y_min,
 float64 y_max,
 float64 c_re,
 float64 c_im,
 Node &res);

nx, ny specify the number of elements in the x and y directions.

x_min, x_max, y_min, y_max specify the x and y extents.

c_re, c_im specify real and complex parts of the constant used.

The resulting data is placed the Node res, which is passed in via reference.

julia amr examples

We also provide examples that represent the julia set using AMR meshes. These functions provide concrete examples of the Mesh Blueprint nestset protocol for patch-based AMR meshes.

[image: _images/julia_nestsets_simple.png]

Pseudocolor, Mesh, and Domain Boundary plots of the julia_nestsets_simple example.

conduit::blueprint::mesh::examples::julia_nestsets_simple(float64 x_min,
 float64 x_max,
 float64 y_min,
 float64 y_max,
 float64 c_re,
 float64 c_im,
 Node &res);

julia_nestsets_simple provides a basic AMR example with two levels and one
parent/child nesting relationship.

x_min, x_max, y_min, y_max specify the x and y extents.

c_re, c_im specify real and complex parts of the constant used.

The resulting data is placed the Node res, which is passed in via reference.

[image: _images/julia_nestsets_complex.png]

Pseudocolor, Mesh, and Domain Boundary plots of the julia_nestsets_complex example.

conduit::blueprint::mesh::examples::julia_nestsets_complex(index_t nx,
 index_t ny,
 float64 x_min,
 float64 x_max,
 float64 y_min,
 float64 y_max,
 float64 c_re,
 float64 c_im,
 index_t levels,
 Node &res);

julia_nestsets_complex provides an AMR example that refines the mesh
using more resolution in complex areas.

nx, ny specify the number of elements in the x and y directions.

x_min, x_max, y_min, y_max specify the x and y extents.

c_re, c_im specify real and complex parts of the constant used.

levels specifies the number of refinement levels to use.

The resulting data is placed the Node res, which is passed in via reference.

venn

[image: _images/venn_example.png]

Pseudocolor plot of the venn example overlap field

The venn() function creates meshes that use three overlapping circle regions, demonstrating different ways to encode volume fraction based multi-material fields. The volume fractions are provided as both standard fields and using the Material sets (matsets) Blueprint. It also creates other fields related to overlap pattern.

conduit::blueprint::mesh::examples::venn(const std::string &matset_type,
 index_t nx,
 index_t ny,
 float64 radius,
 Node &res);

matset_type specifies the style of matset generated by the example.

Here is a list of valid strings for the matset_type argument:

	Matset Type

	Description

	full

	non-sparse volume fractions and matset values

	sparse_by_material

	sparse (material dominant) volume fractions and matset values

	sparse_by_element

	sparse (element dominant) volume fractions and matset values

nx, ny specify the number of elements in the x and y directions.

radius specifies the radius of the three circles.

The resulting data is placed the Node res, which is passed in via reference.

polytess

[image: _images/polytess_render.png]

Pseudocolor plot of the polytess example level field, with nz = 1.

[image: _images/polytess_3d_render.png]

Pseudocolor plot of the polytess example level field, with nz = 2.

[image: _images/polytess_3d_tall_render.png]

Pseudocolor plot of the polytess example level field, with nz = 10.

[image: _images/polytess_3d_big_render.png]

Pseudocolor plot of the polytess example level field, with nz = 6.

The polytess() function generates a polygonal tessellation in the 2D
plane comprised of octagons and squares (known formally as a two-color
truncated square tiling [https://en.wikipedia.org/wiki/Truncated_square_tiling]).
This can be extended into 3D using the nz parameter, which, if greater than 1,
will stack polytessalations on top of one another as follows: first, a polytess is
placed into 3D space, and then a copy of it is placed into a plane parallel to the
original. Then “walls” are added, and finally polyhedra are specified that use
faces from the original polytess, the reflected copy, and the walls. An nz value
of 3 or more will simply add layers to this setup, essentially stacking “sheets” of
polytess on top of one another.

The scalar element-centered field level defined in the result mesh associates each element with its
topological distance from the center of the tessellation.

conduit::blueprint::mesh::examples::polytess(index_t nlevels,
 index_t nz,
 Node &res);

nlevels specifies the number of tessellation levels/layers to generate. If this value is specified
as 1 or less, only the central tessellation level (i.e. the octagon in the center of the geometry) will
be generated in the result.

The resulting data is placed the Node res, which is passed in via reference.

polychain

[image: _images/polychain.png]

Pseudocolor plot of the polyhedral chain example chain field.

The polychain() function generates a chain of cubes and triangular prisms that extends diagonally.

The scalar element-centered field chain defined in the result mesh associates with each cube
the value 0 and with each triangular prism the value 1.

conduit::blueprint::mesh::examples::polychain(const index_t length,
 Node &res);

length specifies how long the chain ought to be. The length is equal to the number of cubes and
equal to half the number of prisms.

The resulting data is placed the Node res, which is passed in via reference.

miscellaneous

This section doesn’t overview any specific example in the conduit::blueprint::mesh::examples namespace,
but rather provides a few additional code samples to help with various common tasks. Each subsection covers
a specific task and presents how it can be accomplished using a function or set of functions in Conduit
and/or the Mesh Blueprint library.

Outputting Meshes for Visualization

Suppose that you have an arbitrary Blueprint mesh that you want to output from a running code and
subsequently visualize using a visualization tool (e.g. VisIt [https://visit.llnl.gov]).
You can save your mesh to a set of files, using one of the following
conduit::relay::io::blueprint library functions:

Save a mesh to disk:

conduit::relay::io::blueprint::write_mesh(const conduit::Node &mesh,
 const std::string &path);

Save a mesh to disk using a specific protocol:

conduit::relay::io::blueprint::write_mesh(const conduit::Node &mesh,
 const std::string &protocol,
 const std::string &path);

Save a mesh to disk using a specific protocol and options:

/// Options accepted via the `opts` Node argument:
///
/// file_style: "default", "root_only", "multi_file"
/// when # of domains == 1, "default" ==> "root_only"
/// else, "default" ==> "multi_file"
///
/// suffix: "default", "cycle", "none"
/// when # of domains == 1, "default" ==> "none"
/// else, "default" ==> "cycle"
///
/// mesh_name: (used if present, default ==> "mesh")
///
/// number_of_files: {# of files}
/// when "multi_file":
/// <= 0, use # of files == # of domains
/// > 0, # of files == number_of_files
///
conduit::relay::io::blueprint::write_mesh(const conduit::Node &mesh,
 const std::string &path,
 const std::string &protocol,
 const conduit::Node &opts);

Loading Meshes from Files

If you have a mesh written to a set of blueprint files, you can load them by
passing the root file path to the following conduit::relay::io::blueprint
library functions:

Load a mesh given a root file:

conduit::relay::io::blueprint::read_mesh(const std::string &root_file_path,
 conduit::Node &mesh);

Load a mesh given a root file and options:

/// Options accepted via the `opts` Node argument:
///
/// mesh_name: "{name}"
/// provide explicit mesh name, for cases where bp data includes
/// more than one mesh.
///
conduit::relay::io::blueprint::read_mesh(const std::string &root_file_path,
 const conduit::Node &opts,
 conduit::Node &mesh);

Complete Uniform Example

This snippet provides a complete C++ example that demonstrates:

	Describing a single-domain uniform mesh in a Conduit tree

	Verifying the tree conforms to the Mesh Blueprint

	Saving the result to a file that VisIt and Ascent Replay can open

// create a Conduit node to hold our mesh data
Node mesh;

// create the coordinate set
mesh["coordsets/coords/type"] = "uniform";
mesh["coordsets/coords/dims/i"] = 3;
mesh["coordsets/coords/dims/j"] = 3;
// add origin and spacing to the coordset (optional)
mesh["coordsets/coords/origin/x"] = -10.0;
mesh["coordsets/coords/origin/y"] = -10.0;
mesh["coordsets/coords/spacing/dx"] = 10.0;
mesh["coordsets/coords/spacing/dy"] = 10.0;

// add the topology
// this case is simple b/c it's implicitly derived from the coordinate set
mesh["topologies/topo/type"] = "uniform";
// reference the coordinate set by name
mesh["topologies/topo/coordset"] = "coords";

// add a simple element-associated field
mesh["fields/ele_example/association"] = "element";
// reference the topology this field is defined on by name
mesh["fields/ele_example/topology"] = "topo";
// set the field values, for this case we have 4 elements
mesh["fields/ele_example/values"].set(DataType::float64(4));

float64 *ele_vals_ptr = mesh["fields/ele_example/values"].value();

for(int i=0;i<4;i++)
{
 ele_vals_ptr[i] = float64(i);
}

// add a simple vertex-associated field
mesh["fields/vert_example/association"] = "vertex";
// reference the topology this field is defined on by name
mesh["fields/vert_example/topology"] = "topo";
// set the field values, for this case we have 9 vertices
mesh["fields/vert_example/values"].set(DataType::float64(9));

float64 *vert_vals_ptr = mesh["fields/vert_example/values"].value();

for(int i=0;i<9;i++)
{
 vert_vals_ptr[i] = float64(i);
}

// make sure we conform:
Node verify_info;
if(!blueprint::mesh::verify(mesh, verify_info))
{
 std::cout << "Verify failed!" << std::endl;
 verify_info.print();
}

// print out results
mesh.print();

// save our mesh to a file that can be read by VisIt
//
// this will create the file: complete_uniform_mesh_example.root
// which includes the mesh blueprint index and the mesh data
conduit::relay::io::blueprint::save_mesh(mesh,
 "complete_uniform_mesh_example",
 "json");

Expressions (Derived Fields)

An expression is a mathematical formula which defines a new field in terms of other fields and/or
other expressions. Expressions are specified in the expressions section of the Blueprint
protocol. The expressions section is optional. When it exists, it is a peer to the fields section.
It is a list of Objects of the form:

	expressions/expression/number_of_components

	expressions/expression/topology

	expressions/expression/definition

The number_of_components and topology entries are identical to their meaning as
entries in the fields section.

The definition entry is string valued and holds the expression (e.g. mathematical formula) defining
how the new field is computed. Blueprint does not interpret this string. It simply passes it along for
downstream consumers that have the ability to interpret the string and perform the associated operations
to compute the expression.

If the expected consumer is VisIt [https://visit.llnl.gov], data producers may wish to consult the
Expressions chapter of the VisIt user’s manual [https://visit-sphinx-github-user-manual.readthedocs.io/en/develop/gui_manual/Quantitative/Expressions.html#built-in-expressions].
In addition, data producers should escape all names of fields or expressions by bracketing
them in < and > characters. An example expressions entry in the index is

"fields":
{
 "braid":
 {
 ...
 },
 "radial":
 {
 ...
 },
"expressions":
{
 "scalar_expr":
 {
 "number_of_components": 1,
 "topology": "mesh",
 "definition": "<vector_expr>[1]"
 },
 "vector_expr":
 {
 "number_of_components": 2,
 "topology": "mesh",
 "definition": "{<braid>,recenter(<radial>,\"nodal\")}"
 }
}

O2MRelation Blueprint

Protocol

To conform to the o2mrelation protocol, a Node must have the following characteristics:

	Be of an Object type (List types are not allowed)

	Contain at least one child that is a numeric leaf

The numeric leaf/leaves of the Node must not be under any of the following “meta component” paths, which all have special meanings and particular requirements when specified as part of an o2mrelation:

	sizes: An integer leaf that specifies the number “many” items associated with each “one” in the relationship.

	offsets: An integer leaf that denotes the start index of the “many” sequence for each “one” in the relationship.

	indices: An integer leaf that indicates the index values of items in the values array(s).

All of the above paths are optional and will resolve to simple defaults if left unspecified. These defaults are outlined below:

	sizes: An array of ones (i.e. [1, 1, 1, ...]) to indicate that the values have one-to-one correspondance.

	offsets: An array of monotonically increasing index values (i.e. [0, 1, 2, ...]) to indicate that the values are compacted.

	indices: An array of monotonically increasing index values (i.e. [0, 1, 2, ...]) to indicate that the values are ordered sequentially.

Taken in sum, the consituents of the o2mrelation schema describe how data (contained in numeric leaves and indexed through indices) maps in grouped clusters (defined by sizes and offsets) from a source space (the “one” space) to a destination space (the “many” space).

Note

While the sizes, offsets, and indices meta components of the o2mrelation definition are
independently defined, they interplay in ways that aren’t immediately obvious. The most commonly missed
of these “gotcha” behaviors are defined below:

	Every o2mrelation must define both or neither of sizes and offsets.

	If none of the meta component paths are specified, their defaults set the o2mrelation to be a compacted, one-to-one relationship.

	The sizes and offsets values always refer to entries in indices. If indices isn’t present, it defaults to a “pass through” index, so in this case sizes and offsets can be thought of as indexing directly into the numeric leaves.

Properties, Queries, and Transforms

	conduit::blueprint::o2mrelation::data_paths(const Node &o2mrelation)

Returns a std::vector<std::string> object containing all of the data paths in the given o2mrelation node.

	Example:

// Input //
{
 "values": [int64],
 "sizes": [int64],
 "offsets": [int32],
 "other": [char8]
}

// Output //
["values"]

	conduit::blueprint::o2mrelation::compact_to(const Node &o2mrelation, Node &res)

Generates a data-compacted version of the given o2mrelation (first parameter) and stores it in the given output node (second parameter).

	Example:

// Input //
{
 "values": [-1, 2, 3, -1, 0, 1, -1],
 "sizes": [2, 2],
 "offsets": [4, 1]
}

// Output //
{
 "values": [0, 1, 2, 3],
 "sizes": [2, 2],
 "offsets": [0, 2]
}

	conduit::blueprint::o2mrelation::generate_offsets(Node &n, Node &info)

Updates the contents of the given node’s offsets child so that it refers to a compacted sequence of one-to-many relationships.

	Example:

// Input //
{
 "values": [0, 1, 2, 3],
 "sizes": [2, 2]
}

// Output //
{
 "values": [0, 1, 2, 3],
 "sizes": [2, 2],
 "offsets": [0, 2]
}

O2MRelation Examples

The o2mrelation blueprint namespace includes a function uniform(), which generates example
hierarchies that cover a range of o2mrelation use cases.

conduit::blueprint::o2mrelation::examples::uniform(conduit::Node &res,
 conduit::index_t nones,
 conduit::index_t nmany = 0,
 conduit::index_t noffset = 0,
 const std::string &index_type = "unspecified");

This function’s arguments have the following precise meanings:

	nones: The number of “one”s in the one-to-many relationship.

	nmany: The number of “many”s associated with each of the “one”s.

	noffset: The stride between each “many” sequence (must be at least nmany).

	index_type: The style of element indirection, which must be one of the following:

	"unspecified": Index indirection will be omitted from the output.

	"default": The default value for index indirection will be supplied in the output.

	"reversed": The index indirection will be specified such that the data is reversed relative to its default order.

The nmany and noffset parameters can both be set to zero to omit the sizes and offsets meta components from the output.
Similarly, the index_type parameter can be omitted or set to "unspecified" in order to remove the indices section from the output.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_o2mrelation_examples.cpp.

MCArray Blueprint

Protocol

To conform to the mcarray blueprint protocol, a Node must have at least one child and:

	All children must be numeric leaves

	All children must have the same number of elements

Properties and Transforms

	
	conduit::Node::is_contiguous()

	conduit::Node contains a general is_contiguous() instance method that is useful in the context of an mcarray.
It can be used to detect if an mcarray has a contiguous memory layout for tuple components (eg: struct of arrays style)

	Example: {x0, x1, … , xN, y0, y1, … , yN , z0, z1, … , xN}

	conduit::blueprint::mcarray::is_interleaved(const Node &mcarray)

Checks if an mcarray has an interleaved memory layout for tuple components (eg: array of structs style)

	Example: {x0, y0, z0, x1, y1, z1, … , xN, yN, zN}

	conduit::blueprint::mcarray::to_contiguous(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with a contiguous memory layout for tuple components

	Example: {x0, x1, … , xN, y0, y1, … , yN , z0, z1, … , xN}

	conduit::blueprint::mcarray::to_interleaved(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with interleaved tuple values

	Example: {x0, y0, z0, x1, y1, z1, … , xN, yN, zN}

MCArray Examples

The mcarray blueprint namespace includes a function xyz(), that generates examples
that cover a range of mcarray memory layout use cases.

conduit::blueprint::mcarray::examples::xyz(const std::string &mcarray_type,
 index_t npts,
 Node &out);

Here is a list of valid strings for the mcarray_type argument:

	MCArray Type

	Description

	interleaved

	One allocation, using interleaved memory layout
with float64 components (array of structs style)

	separate

	Three allocations, separate float64 components arrays
for {x,y,z}

	contiguous

	One allocation, using a contiguous memory layout with
float64 components (struct of arrays style)

	interleaved_mixed

	
	One allocation, using interleaved memory layout with:

	
	float32 x components

	float64 y components

	uint8 z components

The number of components per tuple is always three (x,y,z).

npts specifies the number tuples created.

The resulting data is placed the Node out, which is passed in via a reference.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_mcarray_examples.cpp.

Table Blueprint

The table blueprint protocol provides a convention for expressing tabular data in Conduit.
Each data entry in a table represents a column and each column contains the same
number of rows.
Nodes that conform to the table blueprint protocol are easily translated to and from CSV files.

Protocol

To conform to the table blueprint protocol, a Node must have a “values” child which is a list OR an object and:

	All of “values” children are data arrays OR mcarrays

	All of “values” children must have the same number of elements

A node will also conform to the table blueprint protocol if it is a collection of tables.
A valid collection of tables must be a list OR an object and:

	All of its children are valid tables as defined above.

Table Examples

An example of a table blueprint in yaml format:

values:
 scalar_column: [0, 1, 2, 3]
 vector_column:
 x: [0, 1, 2, 3]
 y: [0, 1, 2, 3]
 z: [0, 1, 2, 3]

An example of a collection of tables in yaml format:

point_data:
 values:
 points:
 x: [0, 1, 2, 3]
 y: [0, 1, 2, 3]
 z: [0, 1, 2, 3]
 scalar_data: [0, 1, 2, 3]
element_data:
 values:
 scalar_data: [0, 1]
 vector_data:
 a: [0, 1]
 b: [0, 1]
 c: [0, 1]

The table blueprint namespace includes a function basic(), that generates a simple
example of tabular data.

conduit::blueprint::table::examples::basic(conduit::index_t nx,
 conduit::index_t ny,
 conduit::index_t nz,
 Node &res);

This function will generate points (points/x, points/y, points/z) in a uniform manner based off the arguments
nx, ny, and nz.
Also included in the output table is a point_data column that starts at 0 and increases by 1 for each point.

The resulting data is placed the Node res, which is passed in via a reference.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_table_verify.cpp
and src/tests/blueprint/t_blueprint_table_examples.cpp.

Partitioning

Partitioning meshes is commonly needed in order to evenly distribute work
among many simulation ranks. Blueprint provides two partition() functions
that can be used to split or recombine Blueprint meshes in serial or parallel.
Full M:N repartioning is supported. The partition() functions are in the
serial and parallel Blueprint libraries, respectively.

// Serial
void conduit::blueprint::mesh::partition(const Node &mesh,
 const Node &options,
 Node &output);

// Parallel
void conduit::blueprint::mpi::mesh::partition(const Node &mesh,
 const Node &options,
 Node &output,
 MPI_Comm comm);

Partitioning meshes using Blueprint will use any options present to determine
how the partitioning process will behave. Typically, a caller would pass options
containing selections if pieces of domains are desired. The partitioner processes
any selections and then examines the desired target number of domains and will then
decide whether domains must be moved among ranks (only in parallel version) and
then locally combined to achieve the target number of domains. The combining
process will attempt to preserve the input topology type for the output topology.
However, in cases where lower topologies cannot be used, the algorithm will promote
the extracted domain parts towards more general topologies and use the one most
appropriate to contain the inputs.

In parallel, the partition() function will make an effort to redistribute data across MPI
ranks to attempt to balance how data are assigned. Domains produced from selections
are assigned round-robin across ranks from rank 0 through rank N-1 until all
domains have been assigned. This assignment is carried out after extracting
selections locally so they can be restributed among ranks
before being combined into the target number of domains.

[image: _images/partition.png]

Partition used to re-partition a 7 domain mesh (left) to different target numbers of domains and to isolate logical subsets.

Options

The partition() functions accept a node containing options. The options node
can be empty and all options are optional. If no options are given, each input mesh
domain will be fully selected. It is more useful to pass selections as part of the
option node with additional options that tell the algorithm how to split or combine
the inputs. If no selections are present in the options node then the partitioner
will create selections of an appropriate type that selects all elements in each
input domain.

The target option is useful for setting the target number of domains in the
final output mesh. If the target value is larger than the number of input domains
or selections then the mesh will be split to achieve that target number of domains.
This may require further subdividing selections. Alternatively, if the target is
smaller than the number of selections then the selections will be combined to
yield the target number of domains. The combining is done such that smaller element
count domains are combined first.

	Option

	Description

	Example

	selections

	A list of selection objects that
identify regions of interest from the
input domains. Selections can be
different on each MPI rank.

	selections:
 -
 type: logical
 start: [0,0,0]
 end: [9,9,9]
 domain_id: 10

	target

	An optional integer that determines the
fields containing original domains and
number of domains in the output. If
given, the value must be greater than 0.
Values larger than the number of
selections cause domains to be split.
Values smaller than the number of
selections cause domains to be combined.
Invalid values are ignored.

If not given, the output will contain
the number of selections. In parallel,
the largest target value from the ranks
will be used for all ranks.

	target: 4

	fields

	An list of strings that indicate the
names of the fields to extract in the
output. If this option is not provided,
all fields will be extracted.

	fields: ["dist", "pressure"]

	mapping

	An integer that determines whether
fields containing original domains and
ids will be added in the output. These
fields enable one to know where each
vertex and element came from originally.
Mapping is on by default. A non-zero
value turns it on and a zero value turns
it off.

	mapping: 0

	merge_tolerance

	A double value that indicates the max
allowable distance between 2 points
before they are considered to be
separate. 2 points spaced smaller than
this distance will be merged when
explicit coordsets are combined.

	merge_tolerance: 0.000001

Selections

Selections can be specified in the options for the partition() function to
select regions of interest that will participate in mesh partitioning. If
selections are not used then all elements from the input meshes will be
selected to partitipate in the partitioning process. Selections can be further
subdivided if needed to arrive at the target number of domains. Selections can
target specific domains and topologies as well. If a selection does not apply
to the input mesh domains then no geometry is produced in the output for that
selection.

The partition() function’s options support 4 types of selections:

	Selection Type

	Topologies

	Description

	logical

	uniform,rectilinear,structured

	Identifies start and end logical IJK ranges to select sub-bricks of uniform, rectilinear, or structured topologies. This selection is not compatible with other topologies.

	explicit

	all

	Identifies an explicit list of element ids and it works with all topologies.

	range

	all

	Identifies ranges of element ids, provided as pairs so the user can select multiple contiguous blocks of elements. This selection works with all topologies

	field

	all

	Uses a specified field to indicate destination domain for each element.

By default, a selection does not apply to any specific domain_id. A list of
selections applied to a single input mesh will extract multiple new domains from
that original input mesh. Since meshes are composed of many domains in practice,
selections can also be associated with certain domain_id values. Selections that
provide a domain_id value will only match domains that either have a matching
state/domain_id value or match its index in the input node’s list of children
(if state/domain_id is not present).

Selections can apply to certain topology names as well. By default, the first
topology is used but if the topology name is provided then the selection will
operate on the specified topology only.

	Option

	Description

	Example

	type

	The selection type

	selections:
 -
 type: logical

	domain_id

	The domain_id to which the selection
will apply. This is almost always an
unsigned integer value.

For field selections, domain_id is
allowed to be a string “any” so a single
selection can apply to many domains.

	selections:
 -
 type: logical
 domain_id: 10

selections:
 -
 type: logical
 domain_id: any

	topology

	The topology to which the selection
will apply.

	selections:
 -
 type: logical
 domain_id: 10
 topology: mesh

Logical Selection

The logical selection allows the partitioner to extract a logical IJK subset from uniform, rectilinear,
or structured topologies. The selection is given as IJK start and end values. If the end values extend
beyond the actual mesh’s logical extents, they will be clipped. The partitioner may
automatically subdivide logical selections into smaller logical selections, if needed,
preserving the logical structure of the input topology into the output.

selections:
 -
 type: logical
 start: [0,0,0]
 end: [9,9,9]

Explicit Selection

The explicit selection allows the partitioner to extract a list of elements.
This is used when the user wants to target a specific set of elements.
The output will result in an explicit topology.

selections:
 -
 type: explicit
 elements: [0,1,2,3,100,101,102]

Range Selection

The range selection is similar to the explicit selection except that it identifies
ranges of elements using pairs of numbers. The list of ranges must be a multiple of
2 in length. The output will result in an explicit topology.

selections:
 -
 type: range
 range: [0,3,100,102]

Field Selection

The field selection enables the partitioner to use partitions done by other tools
using a field on the mesh as the source of the final domain number for each element.
The field must be associated with the mesh elements. When using a field selection,
the partitioner will make a best attempt to use the domain numbers to extract
mesh pieces and reassemble them into domains with those numberings. If a larger
target value is specified, then field selections can sometimes be partitioned further
as explicit partitions. The field selection is unique in that its domain_id value
can be set to “any” if it is desired that the field selection will be applied to
all domains in the input mesh. The domain_id value can still be set to specific
integer values to limit the set of domains over which the selection will be applied.

selections:
 -
 type: field
 domain_id: any
 field: fieldname

Building

This page provides details on several ways to build Conduit from source.

For the shortest path from zero to Conduit, see Quick Start.

If you are building features that depend on third party libraries we recommend using uberenv which leverages Spack or Spack directly.
We also provide info about building for known HPC clusters using uberenv.
and a Docker example that leverages Spack.

Obtain the Conduit source

Clone the Conduit repo from Github:

git clone --recursive https://github.com/llnl/conduit.git

--recursive is necessary because we are using a git submodule to pull in BLT (https://github.com/llnl/blt).
If you cloned without --recursive, you can checkout this submodule using:

cd conduit
git submodule init
git submodule update

Configure a build

Conduit uses CMake for its build system. These instructions assume cmake is in your path.
We recommend CMake 3.9 or newer, for more details see Supported CMake Versions.

config-build.sh is a simple wrapper for the cmake call to configure conduit.
This creates a new out-of-source build directory build-debug and a directory for the install install-debug.
It optionally includes a host-config.cmake file with detailed configuration options.

cd conduit
./config-build.sh

Build, test, and install Conduit:

cd build-debug
make -j 8
make test
make install

Build Options

The core Conduit library has no dependencies outside of the repo, however Conduit provides optional support for I/O and Communication (MPI) features that require externally built third party libraries.

Conduit’s build system supports the following CMake options:

	BUILD_SHARED_LIBS - Controls if shared (ON) or static (OFF) libraries are built. (default = ON)

	ENABLE_TESTS - Controls if unit tests are built. (default = ON)

	ENABLE_EXAMPLES - Controls if examples are built. (default = ON)

	ENABLE_UTILS - Controls if utilities are built. (default = ON)

	ENABLE_TESTS - Controls if unit tests are built. (default = ON)

	ENABLE_DOCS - Controls if the Conduit documentation is built (when sphinx and doxygen are found). (default = ON)

	ENABLE_COVERAGE - Controls if code coverage compiler flags are used to build Conduit. (default = OFF)

	ENABLE_PYTHON - Controls if the Conduit Python module is built. (default = OFF)

	CONDUIT_ENABLE_TESTS - Extra control for if Conduit unit tests are built. Useful for in cases where Conduit is pulled into a larger CMake project (default = ON)

The Conduit Python module can be built for Python 2 or Python 3. To select a specific Python, set the CMake variable PYTHON_EXECUTABLE to path of the desired python binary. The Conduit Python module requires Numpy. The selected Python instance must provide Numpy, or PYTHONPATH must be set to include a Numpy install compatible with the selected Python install.
Note: You can not use compiled Python modules built with Python 2 in Python 3 and vice versa. You need to compile against the version you expect to use.

	ENABLE_MPI - Controls if the conduit_relay_mpi library is built. (default = OFF)

We are using CMake’s standard FindMPI logic. To select a specific MPI set the CMake variables MPI_C_COMPILER and MPI_CXX_COMPILER, or the other FindMPI options for MPI include paths and MPI libraries.

To run the mpi unit tests on LLNL’s LC platforms, you may also need change the CMake variables MPIEXEC and MPIEXEC_NUMPROC_FLAG, so you can use srun and select a partition. (for an example see: src/host-configs/chaos_5_x86_64.cmake)

Warning

Starting in CMake 3.10, the FindMPI MPIEXEC variable was changed to MPIEXEC_EXECUTABLE. FindMPI will still set MPIEXEC, but any attempt to change it before calling FindMPI with your own cached value of MPIEXEC will not survive, so you need to set MPIEXEC_EXECUTABLE [reference] [https://cmake.org/cmake/help/v3.10/module/FindMPI.html].

	HDF5_DIR - Path to a HDF5 install (optional).

Controls if HDF5 I/O support is built into conduit_relay.

	SILO_DIR - Path to a Silo install (optional).

Controls if Silo I/O support is built into conduit_relay. When used, the following CMake variables must also be set:

	HDF5_DIR - Path to a HDF5 install. (Silo support depends on HDF5)

	ADIOS_DIR - Path to an ADIOS install (optional).

Controls if ADIOS I/O support is built into conduit_relay. When used, the following CMake variables must also be set:

	HDF5_DIR - Path to a HDF5 install. (ADIOS support depends on HDF5)

	BLT_SOURCE_DIR - Path to BLT. (default = “blt”)

Defaults to “blt”, where we expect the blt submodule. The most compelling reason to override is to share a single instance of BLT across multiple projects.

Installation Path Options

Conduit’s build system provides an install target that installs the Conduit libraires, headers, python modules, and documentation. These CMake options allow you to control install destination paths:

	CMAKE_INSTALL_PREFIX - Standard CMake install path option (optional).

	PYTHON_MODULE_INSTALL_PREFIX - Path to install Python modules into (optional).

When present and ENABLE_PYTHON is ON, Conduit’s Python modules will be installed to ${PYTHON_MODULE_INSTALL_PREFIX} directory instead of ${CMAKE_INSTALL_PREFIX}/python-modules.

Host Config Files

To handle build options, third party library paths, etc we rely on CMake’s initial-cache file mechanism.

cmake -C config_file.cmake

We call these initial-cache files host-config files, since we typically create a file for each platform or specific hosts if necessary.

The config-build.sh script uses your machine’s hostname, the SYS_TYPE environment variable, and your platform name (via uname) to look for an existing host config file in the host-configs directory at the root of the conduit repo. If found, it passes the host config file to CMake via the -C command line option.

cmake {other options} -C host-configs/{config_file}.cmake ../

You can find example files in the host-configs directory.

These files use standard CMake commands. To properly seed the cache, CMake set commands need to specify CACHE as follows:

set(CMAKE_VARIABLE_NAME {VALUE} CACHE PATH "")

Building Conduit and Third Party Dependencies

We use Spack (http://software.llnl.gov/spack) to help build Conduit’s third party dependencies on OSX and Linux. Conduit builds on Windows as well, but there is no automated process to build dependencies necessary to support Conduit’s optional features.

Uberenv (scripts/uberenv/uberenv.py) automates fetching spack, building and installing third party dependencies, and can optionally install Conduit as well. To automate the full install process, Uberenv uses the Conduit Spack package along with extra settings such as Spack compiler and external third party package details for common HPC platforms.

Building Third Party Dependencies for Development

Note

Conduit developers use scripts/uberenv/uberenv.py to setup third party libraries for Conduit development.
For info on how to use the Conduit Spack package see Building Conduit and its Dependencies with Spack.

On OSX and Linux, you can use scripts/uberenv/uberenv.py to help setup your development environment. This script leverages Spack to build all of the external third party libraries and tools used by Conduit. Fortran support is optional and all dependencies should build without a fortran compiler. After building these libraries and tools, it writes an initial host-config file and adds the Spack built CMake binary to your PATH so can immediately call the config-build.sh helper script to configure a conduit build.

#build third party libs using spack
python scripts/uberenv/uberenv.py

run the configure helper script and give it the
path to a host-config file
./config-build.sh uberenv_libs/`hostname`*.cmake

Uberenv Options for Building Third Party Dependencies

uberenv.py has a few options that allow you to control how dependencies are built:

	Option

	Description

	Default

	–prefix

	Destination directory

	uberenv_libs

	–spec

	Spack spec

	linux: %gcc
osx: %clang

	–spack-config-dir

	Folder with Spack settings files

	linux: (empty)
osx: scripts/uberenv_configs/spack_configs/config/darwin/

	-k

	Ignore SSL Errors

	False

	–install

	Fully install conduit, not just dependencies

	False

	–run_tests

	Invoke tests during build and against install

	False

The -k option exists for sites where SSL certificate interception undermines fetching
from github and https hosted source tarballs. When enabled, uberenv.py clones spack using:

git -c http.sslVerify=false clone https://github.com/llnl/spack.git

And passes -k to any spack commands that may fetch via https.

Default invocation on Linux:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %gcc

Default invocation on OSX:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %clang \
 --spack-config-dir scripts/uberenv_configs/spack_configs/configs/darwin/

The uberenv –install installs conduit@develop (not just the development dependencies):

python scripts/uberenv/uberenv.py --install

To run tests during the build process to validate the build and install, you can use the --run_tests option:

python scripts/uberenv/uberenv.py --install \
 --run_tests

For details on Spack’s spec syntax, see the Spack Specs & dependencies [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] documentation.

You can edit yaml files under scripts/uberenv/spack_config/{platform} or use the –spack-config-dir option to specify a directory with compiler and packages yaml files to use with Spack. See the Spack Compiler Configuration [http://spack.readthedocs.io/en/latest/getting_started.html#manual-compiler-configuration]
and Spack System Packages [http://spack.readthedocs.io/en/latest/getting_started.html#system-packages]
documentation for details.

For OSX, the defaults in spack_configs/darwin/compilers.yaml are X-Code’s clang and gfortran from https://gcc.gnu.org/wiki/GFortranBinaries#MacOS.

Note

The bootstrapping process ignores ~/.spack/compilers.yaml to avoid conflicts
and surprises from a user’s specific Spack settings on HPC platforms.

When run, uberenv.py checkouts a specific version of Spack from github as spack in the
destination directory. It then uses Spack to build and install Conduit’s dependencies into
spack/opt/spack/. Finally, it generates a host-config file {hostname}.cmake in the
destination directory that specifies the compiler settings and paths to all of the dependencies.

Building with Uberenv on Known HPC Platforms

To support testing and installing on common platforms, we maintain sets of Spack compiler and package settings
for a few known HPC platforms. Here are the commonly tested configurations:

	System

	OS

	Tested Configurations (Spack Specs)

	pascal.llnl.gov

	Linux: TOSS3

	%gcc

%gcc~shared

	lassen.llnl.gov

	Linux: BlueOS

	%clang@coral~python~fortran

	cori.nersc.gov

	Linux: SUSE / CNL

	%gcc

See scripts/spack_build_tests/ for the exact invocations used to test on these platforms.

Building Conduit and its Dependencies with Spack

As of 1/4/2017, Spack’s develop branch includes a recipe [https://github.com/LLNL/spack/blob/develop/var/spack/repos/builtin/packages/conduit/package.py] to build and install Conduit.

To install the latest released version of Conduit with all options (and also build all of its dependencies as necessary) run:

spack install conduit

To build and install Conduit’s github develop branch run:

spack install conduit@develop

The Conduit Spack package provides several variants [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] that customize the options and dependencies used to build Conduit:

	Variant

	Description

	Default

	shared

	Build Conduit as shared libraries

	ON (+shared)

	cmake

	Build CMake with Spack

	ON (+cmake)

	python

	Enable Conduit Python support

	ON (+python)

	mpi

	Enable Conduit MPI support

	ON (+mpi)

	hdf5

	Enable Conduit HDF5 support

	ON (+hdf5)

	silo

	Enable Conduit Silo support

	ON (+silo)

	adios

	Enable Conduit ADIOS support

	OFF (+adios)

	doc

	Build Conduit’s Documentation

	OFF (+docs)

Variants are enabled using + and disabled using ~. For example, to build Conduit with the minimum set of options (and dependencies) run:

spack install conduit~python~mpi~hdf5~silo~docs

You can specify specific versions of a dependency using ^. For Example, to build Conduit with Python 3:

spack install conduit+python ^python@3

Supported CMake Versions

We recommend CMake 3.9 or newer. We test building Conduit with CMake 3.9 and 3.14. Other versions of CMake may work, however CMake 3.18.0 and 3.18.1 have known issues that impact HDF5 support. CMake 3.18.2 resolved the HDF5 issues.

Using Conduit in Another Project

Under src/examples there are examples demonstrating how to use Conduit in a CMake-based build system (using-with-cmake) and via a Makefile (using-with-make).

Building Conduit in a Docker Container

Under src/examples/docker/ubuntu there is an example Dockerfile which can be used to create an ubuntu-based docker image with a build of the Conduit. There is also a script that demonstrates how to build a Docker image from the Dockerfile (example_build.sh) and a script that runs this image in a Docker container (example_run.sh). The Conduit repo is cloned into the image’s file system at /conduit, the build directory is /conduit/build-debug, and the install directory is /conduit/install-debug.

Building Conduit with pip

Conduit provides a setup.py that allows pip to use CMake to build and install
Conduit and the Conduit Python module. This script assumes that CMake is in your path.

Example Basic Build:

pip install . --user

Or for those with certificate woes:

pip install --trusted-host pypi.org --trusted-host files.pythonhosted.org . --user

You can enable Conduit features using the following environment variables:

	Option

	Description

	Default

	HDF5_DIR

	Path to HDF5 install for HDF5 Support

	IGNORE

	ENABLE_MPI

	Build Conduit with MPI Support

	OFF

Example Build with MPI and HDF5 Support:

env ENABLE_MPI=ON HDF5_DIR={path/to/hdf5/install} pip install . --user

Notes for Cray systems

HDF5 and gtest use runtime features such as dlopen. Because of this, building static on Cray systems commonly yields the following flavor of compiler warning:

Using 'zzz' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking

You can avoid related linking warnings by adding the -dynamic compiler flag, or by setting the CRAYPE_LINK_TYPE environment variable:

export CRAYPE_LINK_TYPE=dynamic

Shared Memory Maps are read only [https://pubs.cray.com/content/S-0005/CLE%206.0.UP02/xctm-series-dvs-administration-guide-cle-60up02-s-0005/dvs-caveats]
on Cray systems, so updates to data using Node::mmap will not be seen between processes.

Notes for using OpenMPI in a container as root

By default OpenMPI prevents the root user from launching MPI jobs. If you are running as root in a container you can use the following env vars to turn off this restriction:

OMPI_ALLOW_RUN_AS_ROOT=1
OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1

Glossary

This page aims to provide succinct descriptions of important concepts in Conduit.

children

Used for Node instances in the Object and List role interfaces. A Node may hold a set of indexed children (List role), or indexed and named children (Object role). In both of these cases the children of the Node can be accessed, or removed via their index. Methods related to this concept include:

	Node::number_of_children()

	Node::child(index_t)

	Node::child_ptr(index_t)

	Node::operator=(index_t)

	Node::remove(index_t)

	Schema::number_of_children()

	Schema::child(index_t)

	Schema::child_ptr(index_t)

	Schema::operator=(index_t)

	Schema::remove(index_t)

paths

Used for Node instances in Object role interface. In the Object role, a Node has a collection of indexed and named children. Access by name is done via a path. The path is a forward-slash separated URI, where each segment maps to Node in a hierarchal tree. Methods related to this concept include:

	Node::fetch(string)

	Node::fetch_ptr(string)

	Node::operator=(string)

	Node::has_path(string)

	Node::remove(string)

	Schema::fetch(string)

	Schema::fetch_existing(string)

	Schema::fetch_ptr(string)

	Schema::operator=(string)

	Schema::has_path(string)

	Schema::remove(string)

external

Concept used throughout the Conduit API to specify ownership for passed data.
When using Node constructors, Generators, or Node::set calls, you have the option of using an external variant. When external is specified, a Node does not own (allocate or deallocate) the memory for the data it holds.

Developer Documentation

Source Code Repo Layout

	src/libs/

	conduit/ - Main Conduit library source

	relay/ - Relay libraries source

	blueprint/ - Blueprint library source

	src/tests/

	conduit/ - Unit tests for the main Conduit library

	relay/ - Unit tests for Conduit Relay libraries

	blueprint/ - Unit tests for Blueprint library

	thirdparty/ - Unit tests for third party libraries

	src/examples/ - Basic examples related to building and using Conduit

	src/docs/ - Documentation

	src/thirdparty_builtin/ - Third party libraries we build and manage directly

Build System Info

Configuring with CMake

See Building in the User Documentation.

Important CMake Targets

	make: Builds Conduit.

	make test: Runs unit tests.

	make docs: Builds sphinx and doxygen documentation.

	make install: Installs conduit libraries, headers, and documentation to CMAKE_INSTALL_PREFIX

Adding a Unit Test

	Create a test source file in src/tests/{lib_name}/

	All test source files should have a t_ prefix on their file name to make them easy to identify.

	Add the test to build system by editing src/tests/{lib_name}/CMakeLists.txt

Running Unit Tests via Valgrind

We can use ctest’s built-in valgrind support to check for memory leaks in unit tests. Assuming valgrind is automatically detected when you run CMake to configure conduit, you can check for leaks by running:

ctest -D ExperimentalBuild
ctest -D ExperimentalMemCheck

The build system is setup to use src/cmake/valgrind.supp to filter memcheck results. We don’t yet have all spurious issues suppressed, expect to see leaks reported for python and mpi tests.

BLT

Conduit’s CMake-based build system uses BLT (https://github.com/llnl/blt).

Git Development Workflow

Conduit’s primary source repository and issue tracker are hosted on github:

https://github.com/llnl/conduit

We are using a Github Flow model, which is a simpler variant of the confusingly similar sounding Git Flow model.

Here are the basics:

	Development is done on topic branches off the develop.

	Merge to develop is only done via a pull request.

	The develop should always compile and pass all tests.

	Releases are tagged off of develop.

More details on GitHub Flow:

https://guides.github.com/introduction/flow/index.html

Here are some other rules to abide by:

	If you have write permissions for the Conduit repo, you can merge your own pull requests.

	After completing all intended work on branch, please delete the remote branch after merging to develop. (Github has an option to do this after you merge a pull request.)

Releases

Source distributions for Conduit releases are hosted on github:

https://github.com/LLNL/conduit/releases

Note

Conduit uses BLT [https://github.com/LLNL/blt] as its core CMake build system. We leverage BLT as a git submodule, however github does not include submodule contents in its automatically created source tarballs. To avoid confusion, starting with v0.3.0 we provide our own source tarballs that include BLT.

v0.8.2

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.8.2/conduit-v0.8.2-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Fixed

	Blueprint

	Fixed missing C++ include used by Blueprint Parmetis support.

v0.8.1

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.8.1/conduit-v0.8.1-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added CONDUIT_DLL_DIR env var support on windows, for cases where Conduit DLLs are not installed directly inside the Python Module.

	Blueprint

	Allow adjsets to be used in blueprint::mesh::partition to determine global vertex ids.

	Added partial matset support to blueprint::mesh::partition and blueprint::mesh::combine.

Fixed

	General

	Fixed CMake bug with ENABLE_RELAY_WEBSERVER option.

	Fixed build and test issues with Python >= 3.8 on Windows.

	Blueprint

	Fixed a bug in blueprint::mesh::partition where adjsets could be missing in new domains.

	Fixed a bug with blueprint::mesh::matset::to_silo and uni-buffer matsets.

v0.8.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.8.0/conduit-v0.8.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added setup.py for building and installing Conduit and its Python module via pip

	Added DataAccessor class that helps write generic algorithms that consume data arrays using expected types.

	Added support to register custom memory allocators and a custom data movement handler. This allows conduit to move trees of data between heterogenous memory spaces (e.g. CPU and GPU memory). See conduit_utils.hpp for API details.

	Blueprint

	Added conduit::blueprint::{mpi}::partition function that provides a general N-to-M partition capability for Blueprint Meshes. This helps with load balancing and other use cases, including fusing multi-domain data to simplifying post processing. This capability supports several options, see (https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh_partition.html) for more details.

	Added a Table blueprint used to represent tables of numeric data. See (https://llnl-conduit.readthedocs.io/en/latest/blueprint_table.html) more details.

	Added conduit::blueprint::{mpi}::flatten which transforms Blueprint Meshes into Blueprint Tables. This transforms Mesh Blueprint data into a form that is more easily digestible in machine learning applications.

	Added conduit::blueprint::mpi::generate_partition_field, which uses Parmetis to create a field that identifies how to load balance an input mesh elements. This field can be used as a Field selection input to conduit::blueprint::mpi::partition function.

	Added the``blueprint::mesh::examples::polychain`` example. It is an example of a polyhedral mesh. See Mesh Blueprint Examples docs (https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#polychain) for more details.

	Added a new function signature for blueprint::mesh::topology::unstructured::generate_sides, which performs the same task as the original and also takes fields from the original topology and maps them onto the new topology.

	Added blueprint::mpi::mesh::to_polygonal, which provides a MPI aware conversion Blueprint Structured AMR meshes to a Blueprint Polyhedral meshes.

	Added a host of conduit::blueprint::mpi::mesh::generate_* methods, which are the MPI parallel equivalents of the conduit::blueprint::mesh::topology::unstructured::generate_* functions.

	Added the conduit::blueprint::mpi::mesh::find_delegate_domain function, which returns a single delegate domain for the given mesh across MPI ranks (useful when all ranks need mesh information and some ranks can have empty meshes).

	Added check and transform functions for the newly-designated pairwise and maxshare variants of adjsets. For more information, see the conduit::blueprint::mesh::adjset namespace.

	Added mesh::topology::unstructured::to_polytopal as an alias to mesh::topology::unstructured::to_polygonal, to reflect that both polygonal and polyhedral are supported.

	Added conduit::blueprint::mpi::mesh::to_polytopal as an alias to conduit::blueprint::mpi::mesh::to_polygonal and conduit::blueprint::mpi::mesh::to_polyhedral.

	Relay

	Added conduit::relay::io::hdf5_identifier_report methods, which create conduit nodes that describes active hdf5 resource handles.

Changed

	General

	Updated CMake logic to provide more robust Python detection and better support for HDF5 installs that were built with CMake.

	Improved Node::diff and Node::diff_compatible to show string values when strings differ.

	conduit::Node::print() and in Python Node repr and str now use to_summary_string(). This reduces the output for large Nodes. Full output is still supported via to_string(), to_yaml(), etc methods.

	Blueprint

	The blueprint::mesh::examples::polytess function now takes a new argument, called nz, which allows it to be extended into 3 dimensions. See Mesh Blueprint Examples docs (https://llnl-conduit.readthedocs.io/en/latest/blueprint_mesh.html#polytess) for more details.

	Added support for both const and non-const inputs to the conduit::blueprint::mesh::domains function.

	Improved mesh blueprint index generation logic (local and MPI) to support domains with different topos, fields, etc.

	Deprecated accepting npts_z !=0 for 2D shape types in conduit::blueprint::mesh::examples::{braid,basic,grid}. They issue a CONDUIT_INFO message when this detected and future versions will issue a CONDUIT_ERROR.

	An empty Conduit Node is now considered a valid multi-domain mesh. This change was made to make serial uses cases better match sparse MPI multi-domain use cases. Existing code that relied mesh::verify to exclude empty Nodes will now need an extra check to see if an input mesh has data.

	Added MPI communicator argument to conduit::blueprint::mpi::mesh::to_polygonal and conduit::blueprint::mpi::mesh::to_polyhedral.

	Relay

	Added CMake option (ENABLE_RELAY_WEBSERVER, default = ON) to control if Conduit’s Relay Web Server support is built. Down stream codes can check for support via header ifdef CONDUIT_RELAY_WEBSERVER_ENABLED or at runtime in conduit::relay::about.

	Added support to compile against HDF5 1.12.

Fixed

	General

	Avoid compile issue with using _Pragma() with Python 3.8 on Windows

	conduit_node and conduit_datatype in the C API are no longer aliases to void so that callers cannot pass just any pointer to the APIs.

	Fixed memory over read issue with Fortran API due to int vs bool binding error. Fortran API still provides logical returns for methods like conduit_node_has_path() however the binding implementation now properly translates C_INT return codes into logical values.

	Fixed a subtle bug with Node fetch and Object role initialization.

	Blueprint

	Fixed a bug that was causing the conduit::blueprint::mesh::topology::unstructured::generate_* functions to produce bad results for polyhedral input topologies with heterogeneous elements (e.g. tets and hexs).

	Fixed a bug with conduit::relay::io::blueprint::write_mesh that undermined truncate=true option for root-only style output.

	Fixed options parsing bugs and improved error messages for the conduit_blueprint_verify exe.

	Relay

	Changed HDF5 offset support to use 64-bit unsigned integers for offsets, strides, and sizes.

	Fixed a bug with conduit::relay::mpi::io::blueprint::save_mesh where file_style=root_only could crash or truncate output files.

	Fixed a bug with inconsistent HDF5 handles being used in some cases when converting existing HDF5 Datasets from fixed to extendable.

v0.7.2

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.7.2/conduit-v0.7.2-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added the cpp_fort_and_py standalone example. It demos passing Conduit Nodes between C++, Fortran, and Python. See the related tutorial docs (https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_fort_and_py.html) for more details.

	Added conduit::utils::info_handler(), conduit::utils::warning_handler(), and conduit::utils::error_handler() methods, which provide access to the currently registered info, warning, and error handlers.

	Added DataType::index_t method. Creates a DataType instance that describes an index_t, which is an alias to either int32, or int 64 controlled by the CONDUIT_INDEX_32 compile time option.

	Added several more methods to Python DataType interface

	Removed duplicate install of CMake exported target files that served as a bridge for clients using old style paths.

Changed

	General

	Updated to newer version of uberenv and changed to track spack fork https://github.com/alpine-dav/spack (branch: conduit/develop).

	Updated to newer version of BLT to leverage CMake’s FindMPI defined targets when using CMake 3.15 or newer.

	Changed rapidjson namespace to conduit_rapidjson to avoid symbol collisions with other libraries using RapidJSON.

	Blueprint

	The semantics of conduit::blueprint::mesh::verify changed. An empty conduit Node is now considered a valid multi-domain mesh with zero domains. If you always expect mesh data, you can add an additional check for empty to craft code that works for both the old and new verify semantics.

	Relay

	Added Relay HDF5 support for reading and writing to an HDF5 dataset with offset.

	Added conduit::relay::io::hdf5::read_info which allows you to obtain metadata from an HDF5 file.

	Added configure error when conduit lacks MPI support and HDF5 has MPI support

Fixed

	General

	Fixed missing implementation of DataType::is_index_t

	Fixed issue with compiling t_h5z_zfp_smoke.cpp against an MPI-enabled HDF5.

	Blueprint

	Fixed a bug that caused HDF5 reference paths to appear twice in Relay HDF5 Error messages.

	Blueprint

	conduit::relay::io::blueprint.read_mesh now uses read only I/O handles.

v0.7.1

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.7.1/conduit-v0.7.1-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Fixed

	General

	Fixed a bug with Conduit’s C interface including C++ headers.

	Blueprint

	Fixed a bug with blueprint::mesh::matset::to_silo and blueprint::mesh::field::to_silo that could modify input values.

v0.7.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.7.0/conduit-v0.7.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Changed

	General

	Conduit now requires C++11 support.

	Python Node repr string construction now uses Node.to_summary_string()

Added

	CMake: Added extra check for include dir vs fully resolved hdf5 path.

	General

	Added a builtin sandboxed header-only version of fmt. The namespace and directory paths were changed to conduit_fmt to avoid potential symbol collisions with other codes using fmt. Downstream software can use by including conduit_fmt/conduit_fmt.h.

	Added support for using C++11 initializer lists to set Node and DataArray values from numeric arrays. See C++ tutorial docs (https://llnl-conduit.readthedocs.io/en/latest/tutorial_cpp_numeric.html#c-11-initializer-lists) for more details.

	Added a Node::describe() method. This method creates a new node that mirrors the current Node, however each leaf is replaced by summary stats and a truncated display of the values. For use cases with large leaves, printing the describe() output Node is much more helpful for debugging and understanding vs wall of text from other to_string() methods.

	Added conduit::utils::format methods. These methods use fmt to format strings that include fmt style patterns. The formatting arguments are passed as a conduit::Node tree. The args case allows named arguments (args passed as object) or ordered args (args passed as list). The maps case also supports named or ordered args and works in conjunction with a map_index. The map_index is used to fetch a value from an array, or list of strings, which is then passed to fmt. The maps style of indexed indirection supports generating path strings for non-trivial domain partition mappings in Blueprint. This functionality is also available in Python, via the conduit.utils.format method.

	Added DataArray::fill method, which set all elements of a DataArray to a given value.

	Added Node::to_summary_string methods, which allow you to create truncated strings that describe a node tree, control the max number of children and max number of elements shown.

	Added python support for Node.to_summary_string

	Relay

	Added Relay IO Handle mode support for a (append) and t (truncate). Truncate allows you to overwrite files when the handle is opened. The default is append, which preserves prior IO Handle behavior.

	Added conduit::relay::io::blueprint::save_mesh variants, these overwrite existing files (providing relay save semantics) instead of adding mesh data to existing files. We recommend using save_mesh for most uses cases, b/c in many cases write_mesh to an existing HDF5 file set can fail due to conflicts with the current HDF5 tree.

	Added conduit::relay::io::blueprint::load_mesh variants, these reset the passed node before reading mesh data (providing relay load semantics). We recommend using load_mesh for most uses cases.

	Added truncate option to conduit::relay::io::blueprint::write_mesh, this is used by save_mesh.

	Improve capture and reporting of I/O errors in conduit::relay::[mpi::]io::blueprint::{save_mesh|write_mesh}. Now in the MPI case, If any rank fails to open or write to a file all ranks will throw an exception.

	Added yaml detection support to conduit::relay::io:identify_file_type.

	Blueprint

	Added conduit::blueprint::mesh::matset::to_silo() which converts a valid blueprint matset to a node that contains arrays that follow Silo’s sparse mix slot volume fraction representation.

	Added conduit::blueprint::mesh::field::to_silo() which converts a valid blueprint field and matset to a node that contains arrays that follow Silo’s sparse mix slot volume fraction representation.

	Added material_map to conduit::blueprint::mesh:matset::index, to provide an explicit material name to id mapping.

	Added mat_check field to blueprint::mesh::examples::venn. This field encodes the material info in a scalar field and in the matset_values in a way that can be used to easily compare and verify proper construction in other tools.

Fixed

	Relay

	Fixed bug in the Relay IOHandle Basic that would create unnecessary “_json” schema files to be written to disk upon open().

Removed

	General

	Removed Node::fetch_child and Schema::fetch_child methods for v0.7.0. (Deprecated in v0.6.0 – prefer fetch_existing)

	Removed Schema::to_json method variants with detailed for v0.7.0. (Deprecated in v0.6.0 – prefer standard to_json)

	Removed Schema::save method variant with detailed for v0.7.0. (Deprecated in v0.6.0 – prefer standard save)

	The master branch was removed from GitHub (Deprecated in v0.6.0 – replaced by the develop branch)

	Relay

	Removed conduit::relay::io_blueprint::save methods for v0.7.0. (Deprecated in v0.6.0 – prefer conduit::relay::io::blueprint::save_mesh)

v0.6.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.6.0/conduit-v0.6.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added support for children with names that include /. Since slashes are part of Conduit’s hierarchical path mechanism, you must use explicit methods (add_child(), child(), etc) to create and access children with these types of names. These names are also supported in all basic i/o cases (JSON, YAML, Conduit Binary).

	Added Node::child and Schema::child methods, which provide access to existing children by name.

	Added Node::fetch_existing and Schema::fetch_existing methods, which provide access to existing paths or error when given a bad path.

	Added Node::add_child() and Node::remove_child() to support direct operations and cases where names have / s.

	Added a set of conduit::utils::log::remove_* filtering functions, which process conduit log/info nodes and strip out the requested information (useful for focusing the often verbose output in log/info nodes).

	Added to_string() and to_string_default() methods to Node, Schema, DataType, and DataArray. These methods alias either to_yaml() or to_json(). Long term yaml will be preferred over json.

	Added helper script (scripts/regen_docs_outputs.py) that regenerates all example outputs used Conduit’s Sphinx docs.

	Added to_yaml() and to_yaml_stream methods() to Schema, DataType, and DataArray.

	Added support for C++-style iterators on node children. You can now do for (Node &node : node.children()) {}. You can also do node.children.begin() and node.children.end() to work with the iterators directly.

	Relay

	Added an open mode option to Relay IOHandle. See Relay IOHandle docs (https://llnl-conduit.readthedocs.io/en/latest/relay_io.html#relay-i-o-handle-interface) for more details.

	Added the conduit.relay.mpi Python module to support Relay MPI in Python.

	Added support to write and read Conduit lists to HDF5 files. Since HDF5 Groups do not support unnamed indexed children, each list child is written using a string name that represents its index and a special attribute is written to the HDF5 group to mark the list case. On read, the special attribute is used to detect and read this style of group back into a Conduit list.

	Added preliminary support to read Sidre Datastore-style HDF5 using Relay IOHandle, those grouped with a root file.

	Added conduit::relay::io::blueprint::read_mesh functions, were pulled in from Ascent’s Blueprint import logic.

	Added conduit::relay::mpi::wait and conduit::relay::mpi::wait_all functions. These functions consolidate the logic supporting both isend and irecv requests. wait_all supports cases where both sends and receives were posted, which is a common for non-trivial point-to-point communication use cases.

	Blueprint

	Added support for sparse one-to-many relationships with the new blueprint::o2mrelation protocol. See the blueprint::o2mrelation::examples::uniform example for details.

	Added sparse one-to-many, uni-buffer, and material-dominant specification support to Material sets. See the Material sets documentation

	Added support for Adjacency sets for Structured Mesh Topologies. See the blueprint::mesh::examples::adjset_uniform example.

	Added blueprint::mesh::examples::julia_nestsets_simple and blueprint::mesh::examples::julia_nestsets_complex examples represent Julia set fractals using patch-based AMR meshes and the Mesh Blueprint Nesting Set protocol. See the Julia AMR Blueprint docs

	Added blueprint::mesh::examples::venn example that demonstrates different ways to encode volume fraction based multi-material fields. See the Venn Blueprint docs

	Added blueprint::mesh::number_of_domains property method for trees that conform to the mesh blueprint.

	Added MPI mesh blueprint methods, blueprint::mpi::mesh::verify and blueprint::mpi::mesh::number_of_domains (available in the conduit_blueprint_mpi library)

	Added blueprint::mpi::mesh::examples::braid_uniform_multi_domain and blueprint::mpi::mesh::examples::spiral_round_robin distributed-memory mesh examples to the conduit_blueprint_mpi library.

	Added state/path to the Mesh Blueprint index, needed for consumers to know the proper path to read extended state info (such as domain_id)

Fixed

	General

	Updated to newer BLT to resolve BLT/FindMPI issues with rpath linking commands when using OpenMPI.

	Fixed internal object name string for the Python Iterator object. It used to report Schema, which triggered both puzzling and concerned emotions.

	Fixed a bug with Node.set in the Python API that undermined setting NumPy arrays with sliced views and complex striding. General slices should now work with set. No changes to the set_external case, which requires 1-D effective striding and throws an exception when more complex strides are presented.

	Fixed a bug with auto detect of protocol for Node.load

	Fixed bugs with auto detect of protocol for Node.load and Node.save in the Python interface

	Relay

	Use H5F_ACC_RDONLY in relay::io::is_hdf5_file to avoid errors when checking files that already have open HDF5 handles.

	Fixed compatibility check for empty Nodes against HDF5 files with existing paths

Changed

	General

	Conduit’s main git branch was renamed from master to develop. To allow time for folks to migrate, the master branch is active but frozen and will be removed during the 0.7.0 release.

	We recommend a C++11 (or newer) compiler, support for older C++ standards is deprecated and will be removed in a future release.

	Node::fetch_child and Schema::fetch_child are deprecated in favor of the more clearly named Node::fetch_existing and Schema::fetch_existing. fetch_child variants still exist, but will be removed in a future release.

	Python str() methods for Node, Schema, and DataType now use their new to_string() methods.

	DataArray<T>::to_json(std::ostring &) is deprecated in favor DataArray<T>::to_json_stream. to_json(std::ostring &) will be removed in a future release.

	Schema::to_json and Schema::save variants with detailed (bool) arg are deprecated. The detailed arg was never used. These methods will be removed in a future release.

	Node::print() now prints yaml instead of json.

	The string return variants of about methods now return yaml strings instead of json strings.

	Sphinx Docs code examples and outputs are now included using start-after and end-before style includes.

	Schema to_json() and to_json_stream() methods were expanded to support indent, depth, pad and end-of-element args.

	In Python, conduit.Node() repr now returns the YAML string representation of the Node. Perviously verbose conduit_json was used, which was overwhelming.

	conduit.about() now reports the git tag if found, and version was changed to add git sha and status (dirty) info to avoid confusion between release and development installs.

	Relay

	Provide more context when a Conduit Node cannot be written to a HDF5 file because it is incompatible with the existing HDF5 tree. Error messages now provide the full path and details about the incompatibility.

	conduit::relay::io_blueprint::save functions are deprecated in favor of conduit::relay::io::blueprint::write_mesh

	conduit::relay::io::blueprint::write_mesh functions were pulled in from Ascent’s Blueprint export logic.

	conduit_relay_io_mpi lib now depends on conduit_relay_io. Due to this change, a single build supports either ADIOS serial (no-mpi) or ADIOS with MPI support, but not both. If conduit is configured with MPI support, ADIOS MPI is used.

	The functions conduit::relay::mpi::wait_send and conduit::relay::mpi::wait_recv now use conduit::relay::mpi::wait. The functions wait_send and wait_recv exist to preserve the old API, there is no benefit to use them over wait.

	The functions conduit::relay::mpi::wait_all_send and conduit::relay::mpi::wait_all_recv now use conduit::relay::mpi::wait_all. The functions wait_all_send and wait_all_recv exist to preserve the old API, there is no benefit to use them over wait_all.

	Blueprint

	Refactored the Polygonal and Polyhedral mesh blueprint specification to leverage one-to-many concepts and to allow more zero-copy use cases.

	The conduit_blueprint_mpi library now depends on conduit_relay_mpi.

	The optional Mesh Blueprint structured topology logical element origin is now specified using {i,j,k} instead of {i0,j0,k0}.

v0.5.1

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.5.1/conduit-v0.5.1-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added Node::parse() method, (C++, Python and Fortran) which supports common json and yaml parsing use cases without creating a generator instance.

	Use FOLDER target property to group targets for Visual Studio

	Added Node load(), and save() support to the C and Fortran APIs

Changed

	General

	Node::load() and Node::save() now auto detect which protocol to use when protocol argument is an empty string

	Changed Node::load() and Node::save() default protocol value to empty (default now is to auto detect)

	Changed Python linking strategy to defer linking for our compiler modules

	Conduit Error Exception message strings now print cleaner (avoiding nesting doll string escaping headaches)

	Build system improvements to support conda-forge builds for Linux, macOS, and Windows

Fixed

	General

	Fixed install paths for CMake exported target files to follow standard CMake find_package() search conventions. Also perserved duplicate files to support old import path structure for this release.

	python: Fixed Node.set_external() to accept conduit nodes as well as numpy arrays

	Fixed dll install locations for Windows

v0.5.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.5.0/conduit-v0.5.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added support to parse YAML into Conduit Nodes and to create YAML from Conduit Nodes. Support closely follows the “json” protocol, making similar choices related to promoting YAML string leaves to concrete data types.

	Added several more Conduit Node methods to the C and Fortran APIs. Additions are enumerated here: https://github.com/LLNL/conduit/pull/426

	Added Node set support for Python Tuples and Lists with numeric and string entires

	Added Node set support for Numpy String Arrays. String Arrays become Conduit lists with child char8_str arrays

	Blueprint

	Added support for a “zfparray” blueprint that holds ZFP compressed array data.

	Added the the “specsets” top-level section to the Blueprint schema, which can be used to represent multi-dimensional per-material quantities (most commonly per-material atomic composition fractions).

	Added explicit topological data generation functions for points, lines, and faces

	Added derived topology generation functions for element centroids, sides, and corners

	Added the basic example function to the conduit.mesh.blueprint.examples module

	Relay

	Added optional ZFP support to relay, that enables wrapping and unwraping zfp arrays into conduit Nodes.

	Extended relay HDF5 I/O support to read a wider range of HDF5 string representations including H5T_VARIABLE strings.

Changed

	General

	Conduit’s automatic build process (uberenv + spack) now defaults to using Python 3

	Improved CMake export logic to make it easier to find and use Conduit install in a CMake-based build system. (See using-with-cmake example for new recipe)

	Relay

	Added is_open() method to IOHandle in the C++ and Python interfaces

	Added file name information to Relay HDF5 error messages

Fixed

	General

	Fixed bug that caused memory access after free during Node destruction

	Relay

	Fixed crash with mpi broadcast_using_schema() when receiving tasks pass a non empty Node.

	Fixed a few Windows API export issues for relay io

v0.4.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.4.0/conduit-v0.4.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added Generic IO Handle class (relay::io::IOHandle) with C++ and Python APIs, tests, and docs.

	Added rename_child method to Schema and Node

	Added generation and install of conduit_config.mk for using-with-make example

	Added datatype helpers for long long and long double

	Added error for empty path fetch

	Added C functions for setting error, warning, info handlers.

	Added limited set of C bindings for DataType

	Added C bindings for relay IO

	Added several more functions to conduit node python interfaces

	Blueprint

	Added implicit point topology docs and example

	Added julia and spiral mesh bp examples

	Added mesh topology transformations to blueprint

	Added polygonal mesh support to mesh blueprint

	Added verify method for mesh blueprint nestset

	Relay

	Added ADIOS Support, enabling ADIOS read and write of Node objects.

	Added a relay::mpi::io library that mirrors the API of relay::io, except that all functions take an MPI communicator. The functions are implemented in parallel for the ADIOS protocol. For other protocols, they will behave the same as the serial functions in relay::io. For the ADIOS protocol, the save() and save_merged() functions operate collectively within a communicator to enable multiple MPI ranks to save data to a single file as separate “domains”.

	Added an add_time_step() function to that lets the caller append data collectively to an existing ADIOS file

	Added a function to query the number of time steps and the number of domains in a ADIOS file.

	Added versions of save and save_merged that take an options node.

	Added C API for new save, save_merged functions.

	Added method to list an HDF5 group’s child names

	Added save and append methods to the HDF5 I/O interface

	Added docs and examples for relay io

Changed

	General

	Changed mapping of c types to bit-width style to be compatible with C++11 std bit-width types when C++11 is enabled

	Several improvements to uberenv, our automated build process, and building directions

	Upgraded the type system with more explicit signed support

	Relay

	Improvements to the Silo mesh writer

	Refactor to support both relay::io and relay::mpi::io namespaces.

	Refactor to add support for steps and domains to I/O interfaces

	Changed to only use libver latest setting for for hdf5 1.8 to minimize compatibility issues

Fixed

	General

	Fixed bugs with std::vector gap methods

	Fixed A few C function names in conduit_node.h

	Fixed bug in python that was requesting unsigned array for signed cases

	Fixed issue with Node::diff failing for string data with offsets

	Fixes for building on BlueOS with the xl compiler

	Blueprint

	Fixed validity status for blueprint functions

	Fixed improper error reporting for Blueprint references

	Relay

	Relay I/O exceptions are now forwarded to python

	Fixed MPI send_with_schema bug when data was compact but not contiguous

	Switched to use MPI bit-width style data type enums in relay::mpi

v0.3.1

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.3.1/conduit-v0.3.1-src-with-blt.tar.gz]

Highlights

	General

	Added new Node::diff and Node::diff_compatible methods

	Updated uberenv to use a newer spack and removed several custom packages

	C++ Node::set methods now take const pointers for data

	Added Python version of basic tutorial

	Expanded the Node Python Capsule API

	Added Python API bug fixes

	Fixed API exports for static libs on Windows

	Blueprint

	Mesh Protocol

	Removed unnecessary state member in the braid example

	Added Multi-level Array Protocol (conduit::blueprint::mlarray)

	Relay

	Added bug fixes for Relay HDF5 support on Windows

v0.3.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.3.0/conduit-v0.3.0-src-with-blt.tar.gz]

Highlights

	General

	Moved to use BLT (https://github.com/llnl/blt) as our core CMake-based build system

	Bug fixes to support building on Visual Studio 2013

	Bug fixes for conduit::Node in the List Role

	Expose more of the Conduit API in Python

	Use ints instead of bools in the Conduit C-APIs for wider compiler compatibility

	Fixed memory leaks in conduit and conduit_relay

	Blueprint

	Mesh Protocol

	Added support for multi-material fields via matsets (volume fractions and per-material values)

	Added initial support for domain boundary info via adjsets for distributed-memory unstructured meshes

	Relay

	Major improvements conduit_relay I/O HDF5 support

	Add heuristics with knobs for controlling use of HDF5 compact datasets and compression support

	Improved error checking and error messages

	Major improvements to conduit_relay_mpi support

	Add support for reductions and broadcast

	Add support zero-copy pass to MPI for a wide set of calls

	Harden notion of known schema vs generic MPI support

v0.2.1

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.1.tar.gz]

Highlights

	General

	Added fixes to support static builds on BGQ using xlc and gcc

	Fixed missing install of fortran module files

	Eliminated separate fortran libs by moving fortran symbols into their associated main libs

	Changed Node::set_external to support const Node references

	Refactored path and file systems utils functions for clarity.

	Blueprint

	Fixed bug with verify of mesh/coords for rectilinear case

	Added support to the blueprint python module for the mesh and mcarray protocol methods

	Added stand alone blueprint verify executable

	Relay

	Updated the version of civetweb used to avoid dlopen issues with SSL for static builds

v0.2.0

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.0.tar.gz]

Highlights

	General

	Changes to clarify concepts in the conduit::Node API

	Added const access to conduit::Node children and a new NodeConstIterator

	Added support for building on Windows

	Added more Python, C, and Fortran API support

	Resolved several bugs across libraries

	Resolved compiler warnings and memory leaks

	Improved unit test coverage

	Renamed source and header files for clarity and to avoid potential conflicts with other projects

	Blueprint

	Added verify support for the mcarray and mesh protocols

	Added functions that create examples instances of mcarrays and meshes

	Added memory layout transform helpers for mcarrays

	Added a helper that creates a mesh blueprint index from a valid mesh

	Relay

	Added extensive HDF5 I/O support for reading and writing between HDF5 files and conduit Node trees

	Changed I/O protocol string names for clarity

	Refactored the relay::WebServer and the Conduit Node Viewer application

	Added entangle, a python script ssh tunneling solution

Presentations and Publications

Related Publications

	The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman [https://dl.acm.org/citation.cfm?doid=3144769.3144778] Presented at the ISAV 2017 Workshop [http://vis.lbl.gov/Events/ISAV-2017/], held in conjunction with SC 17, on November 12th 2017 in Denver, CO.

	Strawman: A Batch In Situ Visualization and Analysis Infrastructure for Multi-Physics Simulation Codes [http://dl.acm.org/citation.cfm?id=2828625] Presented at the ISAV 2015 Workshop [http://vis.lbl.gov/Events/ISAV-2015/], held in conjunction with SC 15, on November 16th 2015 in Austin, TX.

Presentation Slides

	Conduit and Mesh Blueprint Intro (July 2021) [https://www.ascent-dav.org/2021_07_21_intro_to_conduit.pdf] Presented at LANL 2021 Data Science at Scale Summer School.

	The Conduit Mesh Blueprint: Drafting a New Way to Share Simulation Meshes [https://www.ascent-dav.org/2019_04_24_doecfg_conduit_blueprint.pdf] Presented at DOE Computer Graphics Forum April 2019.

	SciPy 2016 talk on Conduit (July 2016)

	Conduit Introduction (February 2015)

Recorded Talks

	SciPy 2016 talk on Conduit (July 2016) [https://youtu.be/3_GKjeRUPKg]

Interviews

	RCE HPC Podcast on Conduit (October 2015) [http://www.rce-cast.com/Podcast/rce-101-conduit.html]

License Info

Conduit License

Copyright (c) 2014-2022, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

LLNL-CODE-666778

All rights reserved.

This file is part of Conduit.

For details, see: http://software.llnl.gov/conduit/.

Please also read conduit/LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

	Neither the name of the LLNS/LLNL nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

	This notice is required to be provided under our contract with the U.S.
Department of Energy (DOE). This work was produced at Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with
the DOE.

	Neither the United States Government nor Lawrence Livermore National
Security, LLC nor any of their employees, makes any warranty, express
or implied, or assumes any liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately-owned rights.

	Also, reference herein to any specific commercial products, process,
or services by trade name, trademark, manufacturer or otherwise does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or Lawrence Livermore National Security, LLC, and
shall not be used for advertising or product endorsement purposes.

Third Party Builtin Libraries

Here is a list of the software components used by conduit in source form and the location of their respective license files in our source repo.

C and C++ Libraries

	gtest: From BLT - (BSD Style License)

	libb64: src/thirdparty_builtin/libb64/LICENSE (Public Domain)

	rapidjson: src/thirdparty_builtin/rapidjson/license.txt (MIT License)

	civetweb: src/thirdparty_builtin/civetweb-0a95342/LICENSE.md (MIT License)

	libyaml: src/thirdparty_builtin/libyaml-690a781/LICENSE (MIT License)

	fmt: src/thirdparty_builtin/fmt-7.1.0/LICENSE.rst (MIT License)

JavaScript Libraries

	fattable: src/libs/relay/web_clients/rest_client/resources/fattable/LICENSE (MIT License)

	pure: src/libs/relay/web_clients/rest_client/resources/pure/LICENSE.md (BSD Style License)

	d3: src/libs/relay/web_clients/rest_client/resources/d3/LICENSE (BSD Style License)

	jquery: src/libs/relay/web_clients/wsock_test/resources/jquerty-license.txt (MIT License)

Fortran Libraries

	fruit: From BLT - (BSD Style License)

Build System

	CMake: http://www.cmake.org/licensing/ (BSD Style License)

	BLT: https://github.com/llnl/blt (BSD Style License)

	Spack: http://software.llnl.gov/spack (LGPL License)

Documentation

	doxygen: http://www.stack.nl/~dimitri/doxygen/index.html (GPL License)

	sphinx: http://sphinx-doc.org/ (BSD Style License)

	breathe: https://github.com/michaeljones/breathe (BSD Style License)

	rtd sphinx theme: https://github.com/snide/sphinx_rtd_theme/blob/master/LICENSE (MIT License)

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/file.png

_static/up-pressed.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Conduit

 		
 Quick Start

 		
 Installing Conduit and Third Party Dependencies

 		
 Installing Conduit with pip

 		
 Using Conduit in Your Project

 		
 Learning Conduit

 		
 User Documentation

 		
 Conduit

 		
 C++ Tutorial

 		
 Python Tutorial

 		
 Passing Conduit Nodes between C++, Fortran, and Python

 		
 Relay

 		
 Relay I/O

 		
 Relay MPI

 		
 Blueprint

 		
 Mesh Blueprint

 		
 O2MRelation Blueprint

 		
 MCArray Blueprint

 		
 Table Blueprint

 		
 Partitioning

 		
 Top Level Blueprint Interface

 		
 Building

 		
 Obtain the Conduit source

 		
 Configure a build

 		
 Build Options

 		
 Installation Path Options

 		
 Host Config Files

 		
 Building Conduit and Third Party Dependencies

 		
 Building Third Party Dependencies for Development

 		
 Building with Uberenv on Known HPC Platforms

 		
 Building Conduit and its Dependencies with Spack

 		
 Supported CMake Versions

 		
 Using Conduit in Another Project

 		
 Building Conduit in a Docker Container

 		
 Building Conduit with pip

 		
 Notes for Cray systems

 		
 Notes for using OpenMPI in a container as root

 		
 Glossary

 		
 children

 		
 paths

 		
 external

 		
 Developer Documentation

 		
 Source Code Repo Layout

 		
 Build System Info

 		
 Configuring with CMake

 		
 Important CMake Targets

 		
 Adding a Unit Test

 		
 Running Unit Tests via Valgrind

 		
 BLT

 		
 Git Development Workflow

 		
 Releases

 		
 v0.8.2

 		
 Highlights

 		
 v0.8.1

 		
 Highlights

 		
 v0.8.0

 		
 Highlights

 		
 v0.7.2

 		
 Highlights

 		
 v0.7.1

 		
 Highlights

 		
 v0.7.0

 		
 Highlights

 		
 v0.6.0

 		
 Highlights

 		
 v0.5.1

 		
 Highlights

 		
 v0.5.0

 		
 Highlights

 		
 v0.4.0

 		
 Highlights

 		
 v0.3.1

 		
 Highlights

 		
 v0.3.0

 		
 Highlights

 		
 v0.2.1

 		
 Highlights

 		
 v0.2.0

 		
 Highlights

 		
 Presentations and Publications

 		
 Related Publications

 		
 Presentation Slides

 		
 Recorded Talks

 		
 Interviews

 		
 License Info

 		
 Conduit License

 		
 Third Party Builtin Libraries

 		
 Build System

 		
 Documentation

_static/plus.png

_static/minus.png

_images/basic_hex_3d_render.png

_images/basic_tet_2d_render.png
Y-Axis

-10

_images/basic_hex_2d_render.png
Y-Axis

-10

_images/julia_nestsets_complex.png

_images/julia_nestsets_simple.png

_images/basic_tet_3d_render.png

_images/braid_render.png

_images/partition.png
Y-Axis

¥-Axis

Target 10

60606060606060
60606060606060
60606060606060
60606060606060

20205050505050505050
20205050505050505050
01105050505050505050
5050505050505050
5050505050505050
5050505050505050
5050505050505050
5050505050505050

0 2 4 6 8

X-Axis

60606 5060
60606(Target2)6060

60606Guuouvuouuuuuuoud 6060
60606060606060606060606060
60606060606060606060606060
60606060606060606060606060

-60606060606060606060606060

60606060606060606060606060
60606060606060606060606060
60606060606060606060606060

. 60606060606060606060606060
60606060606060606060606060

60606060606060606060606060

4040404040
4040404040
4040404040
4040404040

4040404040

selections

30302020
30302020
3030[@]10
40404040
40404040
40404040
40404040

_images/polychain.png

_images/julia_render.png

_images/polytess_3d_tall_render.png

_images/polytess_render.png

_images/polytess_3d_big_render.png

_images/polytess_3d_render.png

_images/venn_example.png

_images/spherical_coordinates_render.png

_images/spiral_render.png

