

Conduit

Conduit: Simplified Data Exchange for HPC Simulations

Introduction

Conduit is an open source project from Lawrence Livermore National Laboratory that provides an intuitive model for describing hierarchical scientific data in C++, C, Fortran, and Python. It is used for data coupling between packages in-core, serialization, and I/O tasks.

Conduit’s Core API provides:

	A flexible way to describe hierarchal data:

A JSON-inspired data model for describing hierarchical in-core scientific data.

	A sane API to access hierarchal data:

A dynamic API for rapid construction and consumption of hierarchical objects.

Conduit is under active development and targets Linux, OSX, and Windows platforms. The C++ API underpins the other language APIs and currently has the most features. We are still filling out the C, Fortran, and Python APIs.

Describing and sharing computational simulation meshes are very important use cases of Conduit.
The Mesh Blueprint facilitates this. For more details, please see the Mesh Blueprint Docs and Examples.

For more background on Conduit, please see Presentations.

Getting Started

To get started building and using Conduit, see the Quick Start Guide and the Conduit Tutorials for C++ and Python. For more details about building Conduit see the Building documentation.

Unique Features

Conduit was built around the concept that an intuitive in-core data description capability simplifies many other common tasks in the HPC simulation eco-system. To this aim, Conduit’s Core API:

	Provides a runtime focused in-core data description API that does not require repacking or code generation.

	Supports a mix of externally owned and Conduit allocated memory semantics.

Projects Using Conduit

Conduit is used in VisIt [https://wci.llnl.gov/simulation/computer-codes/visit/], ALPINE Ascent [https://github.com/Alpine-DAV/ascent], MFEM [http://mfem.org/],
and LLNL’s Axom Toolkit (to be released).

Conduit Project Resources

Online Documentation

http://software.llnl.gov/conduit/

Github Source Repo

https://github.com/llnl/conduit

Issue Tracker

https://github.com/llnl/conduit/issues

Conduit Libraries

The conduit library provides Conduit’s core data API. The relay and blueprint libraries provide higher-level services built on top of the core API.

conduit

	Provides Conduit’s Core API in C++ and subsets of Core API in Python, C, and Fortran.

	Optionally depends on Fortran and Python with NumPy

relay

	Provides:

	I/O functionally beyond simple binary, memory mapped, and json-based text file I/O.

	A light-weight web server for REST and WebSocket clients.

	Interfaces for MPI communication using conduit::Node instances as payloads.

	Optionally depends on silo, hdf5, szip, adios, and mpi

blueprint

	Provides interfaces for common higher-level conventions and data exchange protocols (eg. describing a “mesh”) using Conduit.

	No optional dependencies

See the User Documentation for more details on these libraries.

Contributors

	Cyrus Harrison (LLNL)

	Brian Ryujin (LLNL)

	Adam Kunen (LLNL)

	Joe Ciurej (LLNL)

	Kathleen Biagas (LLNL)

	Eric Brugger (LLNL)

	Aaron Black (LLNL)

	George Zagaris (LLNL)

	Kenny Weiss (LLNL)

	Matt Larsen (LLNL)

	Todd Gamblin (LLNL)

	Brad Whitlock (Intelligent Light)

	George Aspesi (Harvey Mudd)

	Justin Bai (Harvey Mudd)

	Rupert Deese (Harvey Mudd)

	Linnea Shin (Harvey Mudd)

In 2014 and 2015 LLNL sponsored a Harvey Mudd Computer Science Clinic project focused on using Conduit in HPC Proxy apps. You can read about more details about the clinic project from this LLNL article:
http://computation.llnl.gov/newsroom/hpc-partnership-harvey-mudd-college-and-livermore

Conduit Documentation

	Quick Start
	Installing Conduit and Third Party Dependencies

	Using Conduit in Your Project

	Learning Conduit

	User Documentation
	Conduit

	Relay

	Blueprint

	Building

	Glossary

	Developer Documentation
	Source Code Repo Layout

	Build System Info

	Git Development Workflow

	Releases
	v0.4.0

	v0.3.1

	v0.3.0

	v0.2.1

	v0.2.0

	Presentations
	Slides

	Talks

	Interviews

	Articles

	License Info
	Conduit License

Indices and tables

	Index

	Search Page

Quick Start

Installing Conduit and Third Party Dependencies

The quickest path to install conduit and its dependencies is via uberenv:

git clone --recursive https://github.com/llnl/conduit.git
cd conduit
python scripts/uberenv/uberenv.py --install --prefix="build"

After this completes, build/conduit-install will contain a Conduit install.

For more details about building and installing Conduit see Building. This page provides detailed info about Conduit’s CMake options, uberenv and Spack support. We also provide info about building for known HPC clusters using uberenv and a Docker example that leverages Spack.

Using Conduit in Your Project

The install includes examples that demonstrate how to use Conduit in a CMake-based build system and via a Makefile.

CMake-based build system example (see: examples/conduit/using-with-cmake):

Example that shows how to use an installed instance of Conduit in another
CMake-based build system.

To build:
 mkdir build
 cd build
 cmake -DCONDUIT_DIR={conduit install path} ../
 make
 ./example

Makefile-based build system example (see: examples/conduit/using-with-make):

Example that shows how to use an installed instance of Conduit in Makefile
based build system.

To build:
 make CONDUIT_DIR={conduit install path}
 ./example

From within a conduit install:
 make
 ./example

Learning Conduit

To get starting learning the core Conduit API, see the Conduit Tutorials for C++ and Python.

User Documentation

	Conduit
	C++ Tutorial
	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Accessing Numeric Data
	Accessing Scalars and Arrays

	Using Introspection and Conversion

	Generators
	Using Generator instances to parse JSON schemas

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

	Python Tutorial
	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Generators
	Using Generator instances to parse JSON schemas

	Relay
	Relay I/O
	Relay I/O Path-based Interface
	Relay I/O Path-based Interface Examples
	Save and Load

	Save Merged

	Load Merged

	Load from Subpath

	Save to Subpath

	Relay I/O Handle Interface
	Relay I/O Handle Examples

	Relay I/O HDF5 Interface
	Relay I/O HDF5 Interface Examples
	HDF5 I/O Interface Basics

	HDF5 I/O Options

	Relay MPI
	Known Schema Methods

	Generic Methods

	Blueprint
	Protocol Details
	mcarray
	Protocol

	Properties and Transforms

	Examples

	mesh
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topologies

	Mixed Shape Toplogies
	Element Windings

	Polygonal/Polyhedral Topologies

	(Optional) Element Offsets

	Material Sets

	Fields
	Topology Association for Field Values

	Adjacency Sets

	State

	Examples
	basic
	Uniform

	Rectilinear

	Structured

	Tris

	Quads

	Polygons

	Tets

	Hexs

	Polyhedra

	braid

	spiral

	julia

	polytess

	miscellaneous
	Outputting Meshes for Visualization

	Detailed Uniform Example

	Blueprint Interface

	Building
	Obtain the Conduit source

	Configure a build

	Build Options

	Installation Path Options

	Host Config Files

	Building Conduit and Third Party Dependencies

	Building Third Party Dependencies for Development
	Uberenv Options for Building Third Party Dependencies

	Building with Uberenv on Known HPC Platforms

	Building Conduit and its Dependencies with Spack

	Supported CMake Versions

	Using Conduit in Another Project

	Building Conduit in a Docker Container

	Notes for Cray systems

	Glossary
	children

	paths

	external

Conduit

	C++ Tutorial
	Basic Concepts

	Accessing Numeric Data

	Generators

	Data Ownership

	Node Update Methods

	Error Handling

	Python Tutorial
	Basic Concepts

	Generators

C++ Tutorial

This short tutorial provides C++ examples that demonstrate the Conduit’s Core
API. Conduit’s unit tests (src/tests/{library_name}/) also provide a rich set
of examples for Conduit’s Core API and additional libraries.

	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Accessing Numeric Data
	Accessing Scalars and Arrays

	Using Introspection and Conversion

	Generators
	Using Generator instances to parse JSON schemas

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

Basic Concepts

Node basics

The Node class is the primary object in conduit.

Think of it as a hierarchical variant object.

Node n;
n["my"] = "data";
n.print();

{
 "my": "data"
}

The Node class supports hierarchical construction.

Node n;
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;
n.print();

std::cout << "total bytes: " << n.total_strided_bytes() << std::endl;

{
 "my": "data",
 "a":
 {
 "b":
 {
 "c": "d",
 "e": 64.0
 }
 }
}
total bytes: 15

Borrowing form JSON (and other similar notations), collections of named nodes are
called Objects and collections of unnamed nodes are called Lists, all other types
are leaves that represent concrete data.

Node n;
n["object_example/val1"] = "data";
n["object_example/val2"] = 10u;
n["object_example/val3"] = 3.1415;

for(int i = 0; i < 5 ; i++)
{
 Node &list_entry = n["list_example"].append();
 list_entry.set(i);
}

n.print();

{
 "object_example":
 {
 "val1": "data",
 "val2": 10,
 "val3": 3.1415
 },
 "list_example":
 [
 0,
 1,
 2,
 3,
 4
]
}

You can use a NodeIterator (or a NodeConstIterator) to iterate through a Node’s
children.

Node n;
n["object_example/val1"] = "data";
n["object_example/val2"] = 10u;
n["object_example/val3"] = 3.1415;

for(int i = 0; i < 5 ; i++)
{
 Node &list_entry = n["list_example"].append();
 list_entry.set(i);
}

n.print();

NodeIterator itr = n["object_example"].children();
while(itr.has_next())
{
 Node &cld = itr.next();
 std::string cld_name = itr.name();
 std::cout << cld_name << ": " << cld.to_json() << std::endl;
}

itr = n["list_example"].children();
while(itr.has_next())
{
 Node &cld = itr.next();
 std::cout << cld.to_json() << std::endl;
}

{
 "object_example":
 {
 "val1": "data",
 "val2": 10,
 "val3": 3.1415
 },
 "list_example":
 [
 0,
 1,
 2,
 3,
 4
]
}
val1: "data"
val2: 10
val3: 3.1415
0
1
2
3
4

Behind the scenes, Node instances manage a collection of memory spaces.

Node n;
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;

Node ninfo;
n.info(ninfo);
ninfo.print();

{
 "mem_spaces":
 {
 "0x7fcc834044e0":
 {
 "path": "my",
 "type": "allocated",
 "bytes": 5
 },
 "0x7fcc83405f20":
 {
 "path": "a/b/c",
 "type": "allocated",
 "bytes": 2
 },
 "0x7fcc83405f10":
 {
 "path": "a/b/e",
 "type": "allocated",
 "bytes": 8
 }
 },
 "total_bytes_allocated": 15,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 15,
 "total_strided_bytes": 15
}

There is no absolute path construct, all paths are fetched relative to the current node (a leading
/ is ignored when fetching). Empty paths names are also ignored, fetching a///b is
equalvalent to fetching a/b.

Bitwidth Style Types

When sharing data in scientific codes, knowing the precision of the underlining types is very important.

Conduit uses well defined bitwidth style types (inspired by NumPy) for leaf values.

Node n;
uint32 val = 100;
n["test"] = val;
n.print();
n.print_detailed();

{
 "test": 100
}

{
 "test": {"dtype":"uint32", "number_of_elements": 1, "offset": 0, "stride": 4, "element_bytes": 4, "endianness": "little", "value": 100}
}

Standard C++ numeric types will be mapped by the compiler to bitwidth style types.

Node n;
int val = 100;
n["test"] = val;
n.print_detailed();

{
 "test": {"dtype":"int32", "number_of_elements": 1, "offset": 0, "stride": 4, "element_bytes": 4, "endianness": "little", "value": 100}
}

	Supported Bitwidth Style Types:

	
	signed integers: int8,int16,int32,int64

	unsigned integers: uint8,uint16,uint32,uint64

	floating point numbers: float32,float64

	Conduit provides these types by constructing a mapping for the current platform the from the following types:

	
	char, short, int, long, long long, float, double, long double

When C++11 support is enabled, Conduit’s bitwidth style types will match the C++11 standard bitwidth types defined in <cstdint>.

Compatible Schemas

When a set method is called on a Node, if the data passed to the set is compatible with the Node’s Schema the data is simply copied. No allocation or Schema changes occur. If the data is not compatible the Node will be reconfigured to store the passed data.

Schemas do not need to be identical to be compatible.

You can check if a Schema is compatible with another Schema using the Schema::compatible(Schema &test) method. Here is the criteria for checking if two Schemas are compatible:

	If the calling Schema describes an Object : The passed test Schema must describe an Object and the test Schema’s children must be compatible with the calling Schema’s children that have the same name.

	If the calling Schema describes a List: The passed test Schema must describe a List, the calling Schema must have at least as many children as the test Schema, and when compared in list order each of the test Schema’s children must be compatible with the calling Schema’s children.

	If the calling Schema describes a leaf data type: The calling Schema’s and test Schema’s dtype().id() and dtype().element_bytes() must match, and the calling Schema dtype().number_of_elements() must be greater than or equal than the test Schema’s.

Accessing Numeric Data

Accessing Scalars and Arrays

You can access leaf types (numeric scalars or arrays) using Node’s as_{type}
methods.

Node n;
int64 val = 100;
n = val;
std::cout << n.as_int64() << std::endl;

100

Or you can use Node::value(), which can infer the correct return type via a
cast.

Node n;
int64 val = 100;
n = val;
int64 my_val = n.value();
std::cout << my_val << std::endl;

100

Accessing array data via pointers works the same way, using Node’s as_{type}
methods.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.as_int64_ptr();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

Or using Node::value():

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.value();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

For non-contiguous arrays, direct pointer access is complex due to the indexing
required. Conduit provides a simple DataArray class that handles per-element
indexing for all types of arrays.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,2, // # of elements
 0, // offset in bytes
 sizeof(int64)*2); // stride in bytes

int64_array my_vals = n.value();

for(index_t i=0; i < 2; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals.print();

my_vals[0] = 100
my_vals[1] = 300
[100, 300]

Using Introspection and Conversion

In this example, we have an array in a node that we are interested in
processing using an and existing function that only handles doubles. We ensure
the node is compatible with the function, or transform it to a contiguous
double array.

//---
void must_have_doubles_function(double *vals,index_t num_vals)
{
 for(int i = 0; i < num_vals; i++)
 {
 std::cout << "vals[" << i << "] = " << vals[i] << std::endl;
 }
}

//---
void process_doubles(Node & n)
{
 Node res;
 // We have a node that we are interested in processing with
 // and existing function that only handles doubles.

 if(n.dtype().is_double() && n.dtype().is_compact())
 {
 std::cout << " using existing buffer" << std::endl;

 // we already have a contiguous double array
 res.set_external(n);
 }
 else
 {
 std::cout << " converting to temporary double array " << std::endl;

 // Create a compact double array with the values of the input.
 // Standard casts are used to convert each source element to
 // a double in the new array.
 n.to_double_array(res);
 }

 res.print();

 double *dbl_vals = res.value();
 index_t num_vals = res.dtype().number_of_elements();
 must_have_doubles_function(dbl_vals,num_vals);
}

//---
TEST(conduit_tutorial, numeric_double_conversion)
{

 float32 f32_vals[4] = {100.0,200.0,300.0,400.0};
 double d_vals[4] = {1000.0,2000.0,3000.0,4000.0};

 Node n;
 n["float32_vals"].set(f32_vals,4);
 n["double_vals"].set(d_vals,4);

 std::cout << "float32 case: " << std::endl;

 process_doubles(n["float32_vals"]);

 std::cout << "double case: " << std::endl;

 process_doubles(n["double_vals"]);
}

//---

float32 case:
 converting to temporary double array
[100.0, 200.0, 300.0, 400.0]
vals[0] = 100
vals[1] = 200
vals[2] = 300
vals[3] = 400
double case:
 using existing buffer
[1000.0, 2000.0, 3000.0, 4000.0]
vals[0] = 1000
vals[1] = 2000
vals[2] = 3000
vals[3] = 4000

Generators

Using Generator instances to parse JSON schemas

The Generator class is used to parse conduit JSON schemas into a Node.

Generator g("{test: {dtype: float64, value: 100.0}}","conduit_json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print();
n.print_detailed();

100

{
 "test": 100.0
}

{
 "test": {"dtype":"float64", "number_of_elements": 1, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little", "value": 100.0}
}

The Generator can also parse pure json. For leaf nodes: wide types such as int64, uint64, and float64 are inferred.

Generator g("{test: 100.0}","json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print_detailed();
n.print();

100

{
 "test": {"dtype":"float64", "number_of_elements": 1, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little", "value": 100.0}
}

{
 "test": 100.0
}

Schemas can easily be bound to in-core data.

float64 vals[2];
Generator g("{a: {dtype: float64, value: 100.0}, b: {dtype: float64, value: 200.0} }",
 "conduit_json",
 vals);

Node n;
g.walk_external(n);

std::cout << n["a"].as_float64() << " vs " << vals[0] << std::endl;
std::cout << n["b"].as_float64() << " vs " << vals[1] << std::endl;

n.print();

Node ninfo;
n.info(ninfo);
ninfo.print();

100 vs 100
200 vs 200

{
 "a": 100.0,
 "b": 200.0
}

{
 "mem_spaces":
 {
 "0x7fff5b4da040":
 {
 "path": "a",
 "type": "external"
 }
 },
 "total_bytes_allocated": 0,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 16,
 "total_strided_bytes": 16
}

Compacting Nodes

Nodes can be compacted to transform sparse data.

float64 vals[] = { 100.0,-100.0,
 200.0,-200.0,
 300.0,-300.0,
 400.0,-400.0,
 500.0,-500.0};

// stride though the data with two different views.
Generator g1("{dtype: float64, length: 5, stride: 16}",
 "conduit_json",
 vals);
Generator g2("{dtype: float64, length: 5, stride: 16, offset:8}",
 "conduit_json",
 vals);

Node n1;
g1.walk_external(n1);
n1.print();

Node n2;
g2.walk_external(n2);
n2.print();

// look at the memory space info for our two views
Node ninfo;
n1.info(ninfo);
ninfo.print();

n2.info(ninfo);
ninfo.print();

// compact data from n1 to a new node
Node n1c;
n1.compact_to(n1c);

// look at the resulting compact data
n1c.print();
n1c.schema().print();
n1c.info(ninfo);
ninfo.print();

// compact data from n2 to a new node
Node n2c;
n2.compact_to(n2c);

// look at the resulting compact data
n2c.print();
n2c.info(ninfo);
ninfo.print();

{
 "mem_spaces":
 {
 "0x7fe5e2c05540":
 {
 "path": "",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 40
}
[-100.0, -200.0, -300.0, -400.0, -500.0]

{
 "mem_spaces":
 {
 "0x7fe5e2c05d80":
 {
 "path": "",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 40
}

Data Ownership

The Node class provides two ways to hold data, the data is either owned or externally described:

	If a Node owns data, the Node allocated the memory holding the data and is responsible or deallocating it.

	If a Node externally describes data, the Node holds a pointer to the memory where the data resides and is not responsible for deallocating it.

set vs set_external

The Node::set methods support creating owned data and copying data values in both the owned and externally described cases. The Node::set_external methods allow you to create externally described data:

	set(…): Makes a copy of the data passed into the Node. This will trigger an allocation if the current data type of the Node is incompatible with what was passed. The Node assignment operators use their respective set variants, so they follow the same copy semantics.

	set_external(…): Sets up the Node to describe data passed and access the data externally. Does not copy the data.

int vsize = 5;
std::vector<float64> vals(vsize,0.0);
for(int i=0;i<vsize;i++)
{
 vals[i] = 3.1415 * i;
}

Node n;
n["v_owned"] = vals;
n["v_external"].set_external(vals);

n.info().print();

n.print();

vals[1] = -1 * vals[1];
n.print();

{
 "mem_spaces":
 {
 "0x7fdebac044d0":
 {
 "path": "v_owned",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fdebac045a0":
 {
 "path": "v_external",
 "type": "external"
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 80,
 "total_strided_bytes": 80
}

{
 "v_owned": [0.0, 3.1415, 6.283, 9.4245, 12.566],
 "v_external": [0.0, 3.1415, 6.283, 9.4245, 12.566]

Node Update Methods

The Node class provides three update methods which allow you to easily copy data or the description of data from a source node.

	Node::update(Node &source):

This method behaves similar to a python dictionary update. Entires from the source Node are copied into the calling Node, here are more concrete details:

	If the source describes an Object:

	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child with the same name already exists in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source describes a List:

	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child already exists in the same list order in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source Node describes a leaf data type:

	Update works exactly like a set (not true yet).

	Node::update_compatible(Node &source):

This method copies data from the children in the source Node that are compatible with children in the calling node. No changes are made where children are incompatible.

	Node::update_external(Node &source):

This method creates children in the calling Node that externally describe the children in the source node. It differs from Node::set_external(Node &source) in that set_external() will clear the calling Node so it exactly match an external description of the source Node, whereas update_external() will only change the children in the calling Node that correspond to children in the source Node.

Error Handling

Conduit’s APIs emit three types of messages for logging and error handling:

	Message Type

	Description

	Info

	General Information

	Warning

	Recoverable Error

	Error

	Fatal Error

Default Error Handlers

Conduit provides a default handler for each message type:

	Message Type

	Default Action

	Info

	Prints the message to standard out

	Warning

	Throws a C++ Exception (conduit::Error instance)

	Error

	Throws a C++ Exception (conduit::Error instance)

Using Custom Error Handlers

The conduit::utils namespace provides functions to override each of the three default handlers with a method
that provides the following signature:

void my_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 // your handling code here ...
}

conduit::utils::set_error_handler(my_handler);

Here is an example that re-wires all three error handlers to print to standard out:

//---
void my_info_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[INFO] " << msg << std::endl;
}

void my_warning_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[WARNING!] " << msg << std::endl;
}

void my_error_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[ERROR!] " << msg << std::endl;
 // errors are considered fatal, aborting or unwinding the
 // call stack with an exception are the only viable options
 throw conduit::Error(msg,file,line);
}

 // rewire error handlers
 conduit::utils::set_info_handler(my_info_handler);
 conduit::utils::set_warning_handler(my_warning_handler);
 conduit::utils::set_error_handler(my_error_handler);

 // emit an example info message
 CONDUIT_INFO("An info message");

 Node n;
 n["my_value"].set_float64(42.0);

 // emit an example warning message

 // using "as" for wrong type emits a warning, returns a default value (0.0)
 float32 v = n["my_value"].as_float32();

 // emit an example error message

 try
 {
 // fetching a non-existant path from a const Node emits an error
 const Node &n_my_value = n["my_value"];
 n_my_value["bad"];
 }
 catch(conduit::Error e)
 {
 // pass
 }

[INFO] An info message
[WARNING!] Node::as_float32() const -- DataType float64 at path my_value does not equal expected DataType float32
[ERROR!] Cannot const fetch_child, Node(my_value) is not an object

Using Restoring Default Handlers

The default handlers are part of the conduit::utils interface, so you can restore them using:

// restore default handlers
conduit::utils::set_info_handler(conduit::utils::default_info_handler);
conduit::utils::set_warning_handler(conduit::utils::default_warning_handler);
conduit::utils::set_error_handler(conduit::utils::default_error_handler);

Python Tutorial

This short tutorial provides Python examples that demonstrate the Conduit’s Core
API. Conduit’s unit tests (src/tests/{library_name}/python) also provide a rich set
of examples for Conduit’s Core API and additional libraries.

	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Generators
	Using Generator instances to parse JSON schemas

Basic Concepts

Node basics

The Node class is the primary object in conduit.

Think of it as a hierarchical variant object.

import conduit
n = conduit.Node()
n["my"] = "data"
print(n)

{
 "my": "data"
}

The Node class supports hierarchical construction.

n = conduit.Node()
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;
print(n)
print("total bytes: {}\n".format(n.total_strided_bytes()))

{
 "my": "data",
 "a":
 {
 "b":
 {
 "c": "d",
 "e": 64.0
 }
 }
}
total bytes: 15

Borrowing form JSON (and other similar notations), collections of named nodes are
called Objects and collections of unnamed nodes are called Lists, all other types
are leaves that represent concrete data.

n = conduit.Node()
n["object_example/val1"] = "data"
n["object_example/val2"] = 10
n["object_example/val3"] = 3.1415

for i in range(5):
 l_entry = n["list_example"].append()
 l_entry.set(i)
print(n)

{
 "object_example":
 {
 "val1": "data",
 "val2": 10,
 "val3": 3.1415
 },
 "list_example":
 [
 0,
 1,
 2,
 3,
 4
]
}

You can iterate through a Node’s children.

n = conduit.Node()
n["object_example/val1"] = "data"
n["object_example/val2"] = 10
n["object_example/val3"] = 3.1415

for i in range(5):
 l_entry = n["list_example"].append()
 l_entry.set(i)
print(n)

for v in n["object_example"].children():
 print("{}: {}".format(v.name(),str(v.node())))

for v in n["list_example"].children():
 print(v.node())

{
 "object_example":
 {
 "val1": "data",
 "val2": 10,
 "val3": 3.1415
 },
 "list_example":
 [
 0,
 1,
 2,
 3,
 4
]
}
val1: "data"
val2: 10
val3: 3.1415
0
1
2
3
4

Behind the scenes, Node instances manage a collection of memory spaces.

n = conduit.Node()
n["my"] = "data"
n["a/b/c"] = "d"
n["a"]["b"]["e"] = 64.0
print(n.info())

{
 "mem_spaces":
 {
 "0x7fb538d51320":
 {
 "path": "my",
 "type": "allocated",
 "bytes": 5
 },
 "0x7fb538d31db0":
 {
 "path": "a/b/c",
 "type": "allocated",
 "bytes": 2
 },
 "0x7fb538daf890":
 {
 "path": "a/b/e",
 "type": "allocated",
 "bytes": 8
 }
 },
 "total_bytes_allocated": 15,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 15,
 "total_strided_bytes": 15
}

There is no absolute path construct, all paths are fetched relative to the current node (a leading
/ is ignored when fetching). Empty paths names are also ignored, fetching a///b is
equalvalent to fetching a/b.

Bitwidth Style Types

When sharing data in scientific codes, knowing the precision of the underlining types is very important.

Conduit uses well defined bitwidth style types (inspired by NumPy) for leaf values. In Python, leaves
are provided as NumPy ndarrays.

n = conduit.Node()
n["test"] = numpy.uint32(100)
print(n)

{
 "test": 100
}

Standard Python numeric types will be mapped to bitwidth style types.

n = conduit.Node()
n["test"] = 10
n.print_detailed()

{
 "test": {"dtype":"int64", "number_of_elements": 1, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little", "value": 10}
}

	Supported Bitwidth Style Types:

	
	signed integers: int8,int16,int32,int64

	unsigned integers: uint8,uint16,uint32,uint64

	floating point numbers: float32,float64

	Conduit provides these types by constructing a mapping for the current platform the from the following C++ types:

	
	char, short, int, long, long long, float, double, long double

Compatible Schemas

When a set method is called on a Node, if the data passed to the set is compatible with the Node’s Schema the data is simply copied. No allocation or Schema changes occur. If the data is not compatible the Node will be reconfigured to store the passed data.

Schemas do not need to be identical to be compatible.

You can check if a Schema is compatible with another Schema using the Schema::compatible(Schema &test) method. Here is the criteria for checking if two Schemas are compatible:

	If the calling Schema describes an Object : The passed test Schema must describe an Object and the test Schema’s children must be compatible with the calling Schema’s children that have the same name.

	If the calling Schema describes a List: The passed test Schema must describe a List, the calling Schema must have at least as many children as the test Schema, and when compared in list order each of the test Schema’s children must be compatible with the calling Schema’s children.

	If the calling Schema describes a leaf data type: The calling Schema’s and test Schema’s dtype().id() and dtype().element_bytes() must match, and the calling Schema dtype().number_of_elements() must be greater than or equal than the test Schema’s.

Generators

Using Generator instances to parse JSON schemas

The Generator class is used to parse conduit JSON schemas into a Node.

g = conduit.Generator("{test: {dtype: float64, value: 100.0}}",
 "conduit_json")
n = conduit.Node()
g.walk(n)
print(n["test"])
print(n)

{
 "test": 100.0
}

The Generator can also parse pure json. For leaf nodes: wide types such as int64, uint64, and float64 are inferred.

g = conduit.Generator("{test: 100.0}",
 "json")
n = conduit.Node()
g.walk(n)
print(n["test"])
print(n)

100.0

{
 "test": 100.0
}

Relay

Note

The relay APIs and docs are work in progress.

Conduit Relay is an umbrella project for I/O and communication functionality built on top of Conduit’s Core API. It includes four components:

	io - I/O functionally beyond binary, memory mapped, and json-based text file I/O. Includes optional Silo, HDF5, and ADIOS I/O support.

	web - An embedded web server (built using CivetWeb [https://github.com/civetweb/civetweb]) that can host files and supports developing custom REST and WebSocket backends that use conduit::Node instances as payloads.

	mpi - Interfaces for MPI communication using conduit::Node instances as payloads.

	mpi::io - I/O functionality as with io library but with some notion of collective writing to a shared file that can include multiple time steps and domains.

The io and web features are built into the conduit_relay library. The MPI functionality exists in a separate library conduit_relay_mpi to avoid include and linking issues for serial codes that want to use relay. Likewise, the parallel versions of the I/O functions are built into the conduit_relay_mpi_io library so it can be linked to parallel codes.

	Relay I/O
	Relay I/O Path-based Interface
	Relay I/O Path-based Interface Examples
	Save and Load

	Save Merged

	Load Merged

	Load from Subpath

	Save to Subpath

	Relay I/O Handle Interface
	Relay I/O Handle Examples

	Relay I/O HDF5 Interface
	Relay I/O HDF5 Interface Examples
	HDF5 I/O Interface Basics

	HDF5 I/O Options

	Relay MPI
	Known Schema Methods

	Generic Methods

Relay I/O

Conduit Relay I/O provides optional Silo, HDF5, and ADIOS I/O interfaces.

These interfaces can be accessed through a generic path-based API, generic handle class, or through APIs specific to each underlying I/O interface. The specific APIs provide lower level control and allow reuse of handles, which is more efficient for most non-trivial use cases. The generic handle class strikes a balance between usability and efficiency.

Relay I/O Path-based Interface

The path-based Relay I/O interface allows you to read and write conduit::Nodes using any enabled I/O interface through a simple path-based (string) API. The underlying I/O interface is selected using the extension of the destination path or an explicit protocol argument.

The conduit_relay library provides the following methods in the conduit::relay::io namespace:

	relay::io::save

	Saves the contents of the passed Node to a file. Works like a Node::set to the file: if the file exists, it is overwritten to reflect contents of the passed Node.

	relay::io::save_merged

	Merges the contents of the passed Node to a file. Works like a Node::update to the file: if the file exists, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	relay::io::load

	Loads the contents of a file into the passed Node. Works like a Node::set from the contents of the file: if the Node has existing data, it is overwritten to reflect contents of the file.

	relay::io::load_merged

	Merges the contents of a file into the passed Node. Works like a Node::update rom the contents of the file: if the Node has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

The conduit_relay_mpi_io library provides the conduit::relay::mpi::io namespace which includes variants of these methods which take a MPI Communicator. These variants pass the communicator to the underlying I/O interface to enable collective I/O. Relay currently only supports collective I/O for ADIOS.

Relay I/O Path-based Interface Examples

Save and Load

	C++ Example:

Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using save
conduit::relay::io::save(n,"my_output.hdf5");

//load back from hdf5 using load
Node n_load;
conduit::relay::io::load("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Load result:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Save Merged

	C++ Example:

Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using save
conduit::relay::io::save(n,"my_output.hdf5");

// append a new path to the hdf5 file using save_merged
Node n2;
n2["a/b/new_data"] = 42.0;
std::cout << "\nNode to append:" << std::endl;
n2.print();
conduit::relay::io::save_merged(n2,"my_output.hdf5");

Node n_load;
// load back from hdf5 using load:
conduit::relay::io::load("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Node to append:

{
 "a":
 {
 "b":
 {
 "new_data": 42.0
 }
 }
}

Load result:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value",
 "new_data": 42.0
 }
 }
}

Load Merged

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5");

// append to existing node with data from hdf5 file using load_merged
Node n_load;
n_load["a/b/new_data"] = 42.0;
std::cout << "\nNode to load into:" << std::endl;
n_load.print();
conduit::relay::io::load_merged("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Node to load into:

{
 "a":
 {
 "b":
 {
 "new_data": 42.0
 }
 }
}

Load result:

{
 "a":
 {
 "b":
 {
 "new_data": 42.0,
 "my_string": "value"
 },
 "my_data": 1.0
 }
}

Load from Subpath

	C++ Example:

Node n;
n["path/to/my_data"] = 1.0;
std::cout << "\nNode to write:" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5");

// load only a subset of the tree
Node n_load;
conduit::relay::io::load("my_output.hdf5:path/to",n_load);
std::cout << "\nLoad result from 'path/to'" << std::endl;
n_load.print();

	Output:

Node to write:

{
 "path":
 {
 "to":
 {
 "my_data": 1.0
 }
 }
}

Load result from 'path/to'

{
 "my_data": 1.0
}

Save to Subpath

	C++ Example:

Node n;
n["my_data"] = 1.0;
std::cout << "\nNode to write to 'path/to':" << std::endl;
n.print();

//save to hdf5 using generic i/o save
conduit::relay::io::save(n,"my_output.hdf5:path/to");

// load only a subset of the tree
Node n_load;
conduit::relay::io::load("my_output.hdf5",n_load);
std::cout << "\nLoad result:" << std::endl;
n_load.print();

	Output:

Node to write to 'path/to':

{
 "my_data": 1.0
}

Load result:

{
 "path":
 {
 "to":
 {
 "my_data": 1.0
 }
 }
}

Relay I/O Handle Interface

The relay::io::IOHandle class provides a high level interface to query, read, and modify files.

It provides a generic interface that is more efficient than the path-based interface for protocols like HDF5 which support partial I/O and querying without reading the entire contents of a file.
It also supports simpler built-in protocols (conduit_bin, json, etc) that do not support partial I/O for convenience. Its basic contract is that changes to backing (file on disk, etc) are not guaranteed to be reflected until the handle is closed. Relay I/O Handle does not yet support Silo or ADIOS.

IOHandle has the following instance methods:

	open

	Opens a handle. The underlying I/O interface is selected using the extension of the destination path or an explicit protocol argument.

Danger

Note: While you can read from and write to subpaths using a handle, IOHandle does not yet support opening a file with a subpath (e.g. myhandle.open("file.hdf5:path/data")).

	read

	Merges the contents from the handle or contents from a subpath of the handle into the passed Node. Works like a Node::update from the handle: if the Node has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	write

	Writes the contents of the passed Node to the handle or to a subpath of the handle. Works like a Node::update to the handle: if the handle has existing data, new data paths are appended, common paths are overwritten, and other existing paths are not changed.

	has_path

	Checks if the handle contains a given path.

	list_child_names

	Returns a list of the child names at a given path, or an empty list if the path does not exist.

	remove

	Removes any data at and below a given path. With HDF5 the space may not be fully reclaimed.

	close

	Closes a handle. This is when changes are realized to the backing (file on disc, etc).

Relay I/O Handle Examples

	C++ Example:

// setup node with example data to save
Node n;
n["a/data"] = 1.0;
n["a/more_data"] = 2.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

// save to hdf5 file using the path-based api
conduit::relay::io::save(n,"my_output.hdf5");

// inspect and modify with an IOHandle
conduit::relay::io::IOHandle h;
h.open("my_output.hdf5");

// check for and read a path we are interested in
if(h.has_path("a/data"))
{
 Node nread;
 h.read("a/data",nread);
 std::cout << "\nValue at \"a/data\" = "
 << nread.to_float64()
 << std::endl;
}

// check for and remove a path we don't want
if(h.has_path("a/more_data"))
{
 h.remove("a/more_data");
 std::cout << "\nRemoved \"a/more_data\""
 << std::endl;
}

// verify the data was removed
if(!h.has_path("a/more_data"))
{
 std::cout << "\nPath \"a/more_data\" is no more"
 << std::endl;
}

std::cout << "\nWriting to \"a/c\""
 << std::endl;
// write some new data
n = 42.0;
h.write(n,"a/c");

// find the names of the children of "a"
std::vector<std::string> cld_names;
h.list_child_names("a",cld_names);

// print the names
std::cout << "\nChildren of \"a\": ";
std::vector<std::string>::const_iterator itr;
for (itr = cld_names.begin();
 itr < cld_names.end();
 ++itr)
{
 std::cout << "\"" << *itr << "\" ";
}

std::cout << std::endl;

Node nread;
// read the entire contents
h.read(nread);

std::cout << "\nRead Result:" << std::endl;
nread.print();

	Output:

Node to write:

{
 "a":
 {
 "data": 1.0,
 "more_data": 2.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Value at "a/data" = 1

Removed "a/more_data"

Path "a/more_data" is no more

Writing to "a/c"

Children of "a": "data" "b" "c"

Read Result:

{
 "a":
 {
 "data": 1.0,
 "b":
 {
 "my_string": "value"
 },
 "c": 42.0
 }
}

	Python Example:

import conduit
import conduit.relay.io

n = conduit.Node()
n["a/data"] = 1.0
n["a/more_data"] = 2.0
n["a/b/my_string"] = "value"
print("\nNode to write:")
print(n)

save to hdf5 file using the path-based api
conduit.relay.io.save(n,"my_output.hdf5")

inspect and modify with an IOHandle
h = conduit.relay.io.IOHandle()
h.open("my_output.hdf5")

check for and read a path we are interested in
if h.has_path("a/data"):
 nread = conduit.Node()
 h.read(nread,"a/data")
 print('\nValue at "a/data" = {0}'.format(nread.value()))

check for and remove a path we don't want
if h.has_path("a/more_data"):
 h.remove("a/more_data")
 print('\nRemoved "a/more_data"')

verify the data was removed
if not h.has_path("a/more_data"):
 print('\nPath "a/more_data" is no more')

write some new data
print('\nWriting to "a/c"')
n.set(42.0)
h.write(n,"a/c")

find the names of the children of "a"
cnames = h.list_child_names("a")
print('\nChildren of "a": {0}'.format(cnames))

nread = conduit.Node()
read the entire contents
h.read(nread)

print("\nRead Result:")
print(nread)

	Output:

 Node to write:

 {
 "a":
 {
 "data": 1.0,
 "more_data": 2.0,
 "b":
 {
 "my_string": "value"
 }
 }
 }

 Value at "a/data" = 1.0

 Removed "a/more_data"

 Path "a/more_data" is no more

 Writing to "a/c"

 Children of "a": ['data', 'b', 'c']

 Read Result:

 {
 "a":
 {
 "data": 1.0,
 "b":
 {
 "my_string": "value"
 },
 "c": 42.0
 }
 }

Relay I/O HDF5 Interface

The Relay I/O HDF5 interface provides methods to read and write Nodes using HDF5 handles.
It is also the interface used to implement the path-based and handle I/O interfaces for
HDF5. This interface provides more control and allows more efficient reuse of I/O handles.
It is only available in C++.

Relay I/O HDF5 Interface Examples

Here is a example exercising the basic parts of Relay I/O’s HDF5 interface, for
more detailed documentation see the conduit_relay_io_hdf5_api.hpp header file.

HDF5 I/O Interface Basics

	C++ Example:

// setup node to save
Node n;
n["a/my_data"] = 1.0;
n["a/b/my_string"] = "value";
std::cout << "\nNode to write:" << std::endl;
n.print();

// open hdf5 file and obtain a handle
hid_t h5_id = conduit::relay::io::hdf5_create_file("myoutput.hdf5");

// write data
conduit::relay::io::hdf5_write(n,h5_id);

// close our file
conduit::relay::io::hdf5_close_file(h5_id);

// open our file to read
h5_id = conduit::relay::io::hdf5_open_file_for_read_write("myoutput.hdf5");

// check if a subpath exists
if(conduit::relay::io::hdf5_has_path(h5_id,"a/my_data"))
 std::cout << "\nPath 'myoutput.hdf5:a/my_data' exists" << std::endl;

Node n_read;
// read a subpath (Note: read works like `load_merged`)
conduit::relay::io::hdf5_read(h5_id,"a/my_data",n_read);
std::cout << "\nData loaded:" << std::endl;
n_read.print();

// write more data to the file
n.reset();
// write data (appends data, works like `save_merged`)
// the Node tree needs to be compatible with the existing
// hdf5 state, adding new paths is always fine.
n["a/my_data"] = 3.1415;
n["a/b/c"] = 144;
conduit::relay::io::hdf5_write(n,h5_id);

// Read the entire tree:
n_read.reset();
conduit::relay::io::hdf5_read(h5_id,n_read);
std::cout << "\nData loaded:" << std::endl;
n_read.print();

// other helpers:

// check if a path is a hdf5 file:
if(conduit::relay::io::is_hdf5_file("myoutput.hdf5"))
 std::cout << "File \n'myoutput.hdf5' is a hdf5 file" << std::endl;

	Output:

Node to write:

{
 "a":
 {
 "my_data": 1.0,
 "b":
 {
 "my_string": "value"
 }
 }
}

Path 'myoutput.hdf5:a/my_data' exists

Data loaded:
1.0

Data loaded:

{
 "a":
 {
 "my_data": 3.1415,
 "b":
 {
 "my_string": "value",
 "c": 144
 }
 }
}
File
'myoutput.hdf5' is a hdf5 file

HDF5 I/O Options

	C++ Example:

Node io_about;
conduit::relay::io::about(io_about);
std::cout << "\nRelay I/O Info and Default Options:" << std::endl;
io_about.print();

Node &hdf5_opts = io_about["options/hdf5"];
// change the default chunking threshold to
// a smaller number to enable compression for
// a small array
hdf5_opts["chunking/threshold"] = 2000;
hdf5_opts["chunking/chunk_size"] = 2000;

std::cout << "\nNew HDF5 I/O Options:" << std::endl;
hdf5_opts.print();
// set options
conduit::relay::io::hdf5_set_options(hdf5_opts);

int num_vals = 5000;
Node n;
n["my_values"].set(DataType::float64(num_vals));

float64 *v_ptr = n["my_values"].value();
for(int i=0; i< num_vals; i++)
{
 v_ptr[i] = float64(i);
}

// save using options
std::cout << "\nsaving data to 'myoutput_chunked.hdf5' " << std::endl;

conduit::relay::io::hdf5_save(n,"myoutput_chunked.hdf5");

	Output:

Relay I/O Info and Default Options:

{
 "protocols":
 {
 "json": "enabled",
 "conduit_json": "enabled",
 "conduit_bin": "enabled",
 "hdf5": "enabled",
 "conduit_silo": "disabled",
 "conduit_silo_mesh": "disabled",
 "adios": "disabled"
 },
 "options":
 {
 "hdf5":
 {
 "compact_storage":
 {
 "enabled": "true",
 "threshold": 1024
 },
 "chunking":
 {
 "enabled": "true",
 "threshold": 2000000,
 "chunk_size": 1000000,
 "compression":
 {
 "method": "gzip",
 "level": 5
 }
 }
 }
 }
}

New HDF5 I/O Options:

{
 "compact_storage":
 {
 "enabled": "true",
 "threshold": 1024
 },
 "chunking":
 {
 "enabled": "true",
 "threshold": 2000,
 "chunk_size": 2000,
 "compression":
 {
 "method": "gzip",
 "level": 5
 }
 }
}

saving data to 'myoutput_chunked.hdf5'

You can verify using h5stat that the data set was written to the hdf5 file using chunking and
compression.

Relay MPI

The Conduit Relay MPI library enables MPI communication using conduit::Node instances as payloads. It provides two categories of functionality: Known Schema Methods and Generic Methods. These categories balance flexibility and performance tradeoffs. In all cases the implementation tries to avoid unnecessary reallocation, subject to the constraints of MPI’s API input requirements.

Known Schema Methods

Methods that transfer a Node’s data, assuming the schema is known. They assume that Nodes used for output are implicitly compatible with their sources.

	Supported MPI Primitives:

	
	send/recv

	isend/irecv

	reduce/all_reduce

	broadcast

	gather/all_gather

For both point to point and collectives, here is the basic logic for how input Nodes are treated by these methods:

	For Nodes holding data to be sent:

	If the Node is compact and contiguously allocated, the Node’s pointers are passed directly to MPI.

	If the Node is not compact or not contiguously allocated, the data is compacted to temporary contiguous buffers that are passed to MPI.

	For Nodes used to hold output data:

	If the output Node is compact and contiguously allocated, the Node’s pointers are passed directly to MPI.

	If the output Node is not compact or not contiguously allocated, a Node with a temporary contiguous buffer is created and that buffer is passed to MPI. An update call is used to copy out the data from the temporary buffer to the output Node. This avoids re-allocation and modifying the schema of the output Node.

Generic Methods

Methods that transfer both a Node’s data and schema. These are useful for generic messaging, since the schema does not need to be known by receiving tasks. The semantics of MPI place constraints on what can be supported in this category.

	Supported MPI Primitives:

	
	send/recv

	gather/all_gather

	broadcast

	Unsupported MPI Primitives:

	
	isend/irecv

	reduce/all_reduce

For both point to point and collectives, here is the basic logic for how input Nodes are treated by these methods:

	For Nodes holding data to be sent:

	If the Node is compact and contiguously allocated:

	The Node’s schema is sent as JSON

	The Node’s pointers are passed directly to MPI

	If the Node is not compact or not contiguously allocated:

	The Node is compacted to temporary Node

	The temporary Node’s schema is sent as JSON

	The temporary Nodes’s pointers are passed to MPI

	For Nodes used to hold output data:

	If the output Node is not compatible with the received schema, it is reset using the received schema.

	If the output Node is compact and contiguously allocated, its pointers are passed directly to MPI.

	If the output Node is not compact or not contiguously allocated, a Node with a temporary contiguous buffer is created and that buffer is passed to MPI. An update call is used to copy out the data from the temporary buffer to the output Node. This avoids re-allocation and modifying the schema of the output Node.

Blueprint

The flexibility of the Conduit Node allows it to be used to represent a wide range of scientific data. Unconstrained, this flexibly can lead to many application specific choices for common types of data that could potentially be shared between applications.

The goal of Blueprint is to help facilite a set of shared higher-level conventions for using Conduit Nodes to hold common simulation data structures. The Blueprint library in Conduit provides methods to verify if a Conduit Node instance conforms to known conventions, which we call protocols. It also provides property and transform methods that can be used on conforming Nodes.

For now, Blueprint is focused on conventions for two important types of data:

	Multi-Component Arrays (protocol: mcarray)

A multi-component array is a collection of fixed-sized numeric tuples.
They are used in the context computational meshes to represent coordinate data or field data, such as the three directional components of a 3D velocity field. There are a few common in-core data layouts used by several APIs to accept multi-component array data, these include: row-major vs column-major layouts, or the use of arrays of struct vs struct of arrays in C-style languages. Blueprint provides transforms that convert any multi-component array to these common data layouts.

	Computational Meshes (protocol: mesh)

Many taxonomies and concrete mesh data models have been developed to allow computational meshes to be used in software. Blueprint’s conventions for representing mesh data were formed by negotiating with simulation application teams at LLNL and from a survey of existing projects that provide scientific mesh-related APIs including: ADIOS, Damaris, EAVL, MFEM, Silo, VTK, VTKm, and Xdmf. Blueprint’s mesh conventions are not a replacement for existing mesh data models or APIs. Our explicit goal is to outline a comprehensive, but small set of options for describing meshes in-core that simplifies the process of adapting data to several existing mesh-aware APIs.

Protocol Details

	mcarray
	Protocol

	Properties and Transforms

	Examples

	mesh
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topologies

	Mixed Shape Toplogies
	Element Windings

	Polygonal/Polyhedral Topologies

	(Optional) Element Offsets

	Material Sets

	Fields
	Topology Association for Field Values

	Adjacency Sets

	State

	Examples
	basic
	Uniform

	Rectilinear

	Structured

	Tris

	Quads

	Polygons

	Tets

	Hexs

	Polyhedra

	braid

	spiral

	julia

	polytess

	miscellaneous
	Outputting Meshes for Visualization

	Detailed Uniform Example

Blueprint Interface

Blueprint provides a generic top level verify() method, which exposes the verify checks for all supported protocols.

bool conduit::blueprint::verify(const std::string &protocol,
 const Node &node,
 Node &info);

verify() returns true if the passed Node node conforms to the named protocol. It also provides details about the verification, including specific errors in the passed info Node.

// setup our candidate and info nodes
Node n, info;

//create an example mesh
conduit::blueprint::mesh::examples::braid("tets",
 5,5,5,
 n);
// check if n conforms
if(conduit::blueprint::verify("mesh",n,info))
 std::cout << "mesh verify succeeded." << std::endl;
else
 std::cout << "mesh verify failed!" << std::endl;

// show some of the verify details
info["coordsets"].print();

{
 "coords":
 {
 "values":
 {
 "valid": "true"
 },
 "valid": "true"
 }
}

Methods for specific protocols are grouped in namespaces:

// setup our candidate and info nodes
Node n, verify_info, mem_info;

// create an example mcarray
conduit::blueprint::mcarray::examples::xyz("separate",5,n);

std::cout << "example 'separate' mcarray " << std::endl;
n.print();
n.info(mem_info);
mem_info.print();

// check if n conforms
if(conduit::blueprint::verify("mcarray",n,verify_info))
{
 // check if our mcarray has a specific memory layout
 if(!conduit::blueprint::mcarray::is_interleaved(n))
 {
 // copy data from n into the desired memory layout
 Node xform;
 conduit::blueprint::mcarray::to_interleaved(n,xform);
 std::cout << "transformed to 'interleaved' mcarray " << std::endl;
 xform.print_detailed();
 xform.info(mem_info);
 mem_info.print();
 }
}

example 'separate' mcarray

{
 "x": [1.0, 1.0, 1.0, 1.0, 1.0],
 "y": [2.0, 2.0, 2.0, 2.0, 2.0],
 "z": [3.0, 3.0, 3.0, 3.0, 3.0]
}

{
 "mem_spaces":
 {
 "0x7fd6c0600100":
 {
 "path": "x",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fd6c0600460":
 {
 "path": "y",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fd6c0600130":
 {
 "path": "z",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 120,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 120,
 "total_strided_bytes": 120
}
transformed to 'interleaved' mcarray

{
 "x": {"dtype":"float64", "number_of_elements": 5, "offset": 0, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [1.0, 1.0, 1.0, 1.0, 1.0]},
 "y": {"dtype":"float64", "number_of_elements": 5, "offset": 8, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [2.0, 2.0, 2.0, 2.0, 2.0]},
 "z": {"dtype":"float64", "number_of_elements": 5, "offset": 16, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [3.0, 3.0, 3.0, 3.0, 3.0]}
}

{
 "mem_spaces":
 {
 "0x7fd6c0602090":
 {
 "path": "",
 "type": "allocated",
 "bytes": 120
 }
 },
 "total_bytes_allocated": 120,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 120,
 "total_strided_bytes": 312
}

mcarray

Protocol

To conform to the mcarray blueprint protocol, a Node must have at least one child and:

	All children must be numeric leaves

	All children must have the same number of elements

Properties and Transforms

	
	conduit::Node::is_contiguous()

	conduit::Node contains a general is_contiguous() instance method that is useful in the context of an mcarray.
It can be used to detect if an mcarray has a contiguous memory layout for tuple components (eg: struct of arrays style)

	Example: {x0, x1, … , xN, y0, y1, … , yN , z0, z1, … , xN}

	conduit::blueprint::mcarray::is_interleaved(const Node &mcarray)

Checks if an mcarray has an interleaved memory layout for tuple components (eg: struct of arrays style)

	Example: {x0, y0, z0, x1, y1, z1, … , xN, yN, zN}

	conduit::blueprint::mcarray::to_contiguous(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with a contiguous memory layout for tuple components

	Example: {x0, x1, … , xN, y0, y1, … , yN , z0, z1, … , xN}

	conduit::blueprint::mcarray::to_interleaved(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with interleaved tuple values

	Example: {x0, y0, z0, x1, y1, z1, … , xN, yN, zN}

Examples

The mcarray blueprint namespace includes a function xyz(), that generates examples
that cover a range of mcarray memory layout use cases.

conduit::blueprint::mcarray::examples::xyz(const std::string &mcarray_type,
 index_t npts,
 Node &out);

Here is a list of valid strings for the mcarray_type argument:

	MCArray Type

	Description

	interleaved

	One allocation, using interleaved memory layout
with float64 components (array of structs style)

	separate

	Three allocations, separe float64 components arrays for
{x,y,z}

	contiguous

	One allocation, using a contiguous memory layout with
float64 components (struct of arrays style)

	interleaved_mixed

	
	One allocation, using interleaved memory layout with:

	
	float32 x components

	float64 y components

	uint8 z components

The number of components per tuple is always three (x,y,z).

npts specifies the number tuples created.

The resulting data is placed the Node out, which is passed in via a reference.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_mcarray_examples.cpp.

mesh

This section provides details about the Mesh Blueprint. Lots of them.
We don’t have a Mesh Blueprint tutorial yet, if you are looking to wrap your mind
around the basic mechanics of describing a mesh, you may want to start by reviewing
the Detailed Uniform Example
and exploring the other Examples included in the blueprint library.

Protocol

The Blueprint protocol defines a single-domain computational mesh using one or more Coordinate Sets (via child coordsets), one or more Topologies (via child topologies), zero or more Materials Sets (via child matsets), zero or more Fields (via child fields), optional Adjacency Set information (via child adjsets), and optional State information (via child state).
The protocol defines multi-domain meshes as Objects that contain one or more single-domain mesh entries.
For simplicity, the descriptions below are structured relative to a single-domain mesh Object that contains one Coordinate Set named coords, one Topology named topo, and one Material Set named matset.

Coordinate Sets

To define a computational mesh, the first required entry is a set of spatial coordinate tuples that can underpin a mesh topology.

The mesh blueprint protocol supports sets of spatial coordinates from three coordinate systems:

	Cartesian: {x,y,z}

	Cylindrical: {r,z}

	Spherical: {r,theta,phi}

The mesh blueprint protocol supports three types of Coordinate Sets: uniform, rectilinear, and explicit. To conform to the protocol, each entry under coordsets must be an Object with entries from one of the cases outlined below:

	uniform

An implicit coordinate set defined as the cartesian product of i,j,k dimensions starting at an origin (ex: {x,y,z}) using a given spacing (ex: {dx,dy,dz}).

	Cartesian

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j,k}

	coordsets/coords/origin/{x,y,z} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dx,dy,dz} (optional, default = {1.0, 1.0, 1.0})

	Cylindrical

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,z} (optional, default = {0.0, 0.0})

	coordsets/coords/spacing/{dr,dz} (optional, default = {1.0, 1.0})

	Spherical

	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,theta,phi} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dr,dtheta, dphi} (optional, default = {1.0, 1.0, 1.0})

	rectilinear

An implicit coordinate set defined as the cartesian product of passed coordinate arrays.

	Cartesian

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{x,y,z}

	Cylindrical:

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{r,z}

	Spherical

	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{r,theta,phi}

	explicit

An explicit set of coordinates, which includes values that conforms to the mcarray blueprint protocol.

	Cartesian

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{x,y,z}

	Cylindrical

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,z}

	Spherical

	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,theta,phi}

Toplogies

The next entry required to describe a computational mesh is its topology. To conform to the protocol, each entry under topologies must be an Object that contains one of the topology descriptions outlined below.

Topology Nomenclature

The mesh blueprint protocol describes meshes in terms of vertices, edges, faces, and elements.

The following element shape names are supported:

	Name

	Geometric Type

	Specified By

	point

	point

	an index to a single coordinate tuple

	line

	line

	indices to 2 coordinate tuples

	tri

	triangle

	indices to 3 coordinate tuples

	quad

	quadrilateral

	indices to 4 coordinate tuples

	tet

	tetrahedron

	indices to 4 coordinate tuples

	hex

	hexahedron

	indices to 8 coordinate tuples

	polygonal

	polygon

	an index count N, then indices to N coordinate tuples

	polyhedral

	polyhedron

	a face count M, then M polygonal face definitions

Association with a Coordinate Set

Each topology entry must have a child coordset with a string that references a valid coordinate set by name.

	topologies/topo/coordset: “coords”

Optional association with a Grid Function

Topologies can optionally include a child grid_function with a string that references a valid field by name.

	topologies/topo/grid_function: “gf”

Implicit Topology

The mesh blueprint protocol accepts four implicit ways to define a topology on a coordinate set. The first simply uses all the points in a given coordinate set and the rest define grids of elements on top of a coordinate set. For the grid cases with a coordinate set with 1D coordinate tuples, line elements are used, for sets with 2D coordinate tuples quad elements are used, and for 3D coordinate tuples hex elements are used.

	points: An implicit topology using all of the points in a coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “points”

	uniform: An implicit topology that defines a grid of elements on top of a uniform coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “uniform”

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

	rectilinear: An implicit topology that defines a grid of elements on top of a rectilinear coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “rectilinear”

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

	structured: An implicit topology that defines a grid of elements on top of an explicit coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type = “structured”

	topologies/topo/elements/dims/{i,j,k}

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

Explicit (Unstructured) Topology

Single Shape Topologies

For topologies using a homogenous collection of element shapes (eg: all hexs), the topology can be specified by
a connectivity array and a shape name.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “unstructured”

	topologies/topo/elements/shape: (shape name)

	topologies/topo/elements/connectivity: (index array)

Mixed Shape Toplogies

For topologies using a non-homogenous collections of element shapes (eg: hexs and tets), the topology can
specified using a single shape topology for each element shape.

	list - A Node in the List role, that contains a children that conform to the Single Shape Topology case.

	object - A Node in the Object role, that contains a children that conform to the Single Shape Topology case.

Note

Future version of the mesh blueprint will expand support to include mixed elements types in a single array with related
index arrays.

Element Windings

The mesh blueprint does yet not have a prescribed winding convention (a way to order the association of vertices to elements) or more generally to
outline a topology’s dimensional cascade (how elements are related to faces, faces are related to edges, and edges are related to vertices.)

This is a gap we are working to solve in future versions of the mesh blueprint, with a goal of providing transforms to
help convert between different winding or cascade schemes.

That said VTK (and VTK-m) winding conventions are assumed by MFEM, VisIt, or Ascent when using Blueprint data.

Polygonal/Polyhedral Topologies

While the polygonal and polyhedral topology shape types share the same
structural specification as all the the implicit topology shape types (i.e.
their schema at the Object level is identical), the contents of their
elements/connectivity arrays look slightly different. In particular,
the connectivity for each element in this array is prefixed by an index
count that specifies the total number of indices (polygonal) or faces (polyhedral)
that comprise that element, allowing the shape of each element to be
arbitrarily specified and independently controlled. Put more explicitly, the
connectivity lists for the polygonal and polyhedral topology shapes
follow these rules:

	polygonal - The first element starts at the beginning of the elements/connectivity
list. The first value V for each element E indicates the number of
vertices that comprise polygon E. The next V values in the list
are indices for the V coordinates that comprise E. The next
element begins after this sequence of V values, and this specification
continues until the connectivity list is exhausted of items.

// Example Diagram:
//
// 4-----5
// |`\ |
// e1 -> | \ | <- e0
// | \.|
// 7-----6
//

// index count ---+ +--- coordinate index values
// | |
// v |-----|
int64 poly_data[] = {3, 4, 6, 5, // element 0
 3, 7, 6, 4}; // element 1

conduit::Node topology = mesh["topologies/poly_topo"];
topology["coordset"] = "coords";
topology["type"] = "unstructured";
topology["elements/shape"] = "polygonal";
topology["elements/connectivity"].set_int64_ptr(&poly_data[0], 8);

	polyhedral - The first element begins at the first index of the
elements/connectivity list. The first value F for each element E
specifies the number of faces that comprise polyhedron E. The next value
V denotes the number of vertices that comprise the first polygonal face
F1 of polyhedron E. Exactly like the polygonal specification, the following
sequence of V values contain the indices of the coordinates for face F1.
The next face F2 begins immediately after this sequence, and this process
continues until F faces are enumerated. The next element then begins after
this supersequence, and this specification continues until the connectivity list
is exhausted of items.

// Example Diagram:
//
// 0
// /|\
// / | \ <- e0
// / | \
// /_.-3-._\
// 1., | ,.4
// \ `'2'` /
// \ | /
// e1 -> \ | /
// \|/
// 5
//

// face index count ---+
// |
// face count ---+ | +--- coordinate index values
// | | |
// v v |-----|
int64 poly_data[] = {5, 3, 0, 1, 2, 3, 0, 2, 4, 3, 0, 1, 3, 3, 0, 3, 4, 4, 1, 2, 4, 3, // element 0
 5, 3, 5, 1, 2, 3, 5, 2, 4, 3, 5, 1, 3, 3, 5, 3, 4, 4, 1, 2, 4, 3}; // element 1

conduit::Node topology = mesh["topologies/poly_topo"];
topology["coordset"] = "coords";
topology["type"] = "unstructured";
topology["elements/shape"] = "polyhedral";
topology["elements/connectivity"].set_int64_ptr(&poly_data[0], 44);

(Optional) Element Offsets

Unstructured topologies can optionally include a child elements/offsets to
indicate the starting position of each element defined in the elements/connectivity
array. This list is most often specified for heterogeneous and polygonal/polyhedral
topologies so that the elements don’t need to be found by stepping through the input
connectivity array.

	topologies/topo/elements/offsets: (index array)

To generate this array for a given unstructured topology topo, make the
following call:

conduit::blueprint::mesh::topology::unstructured::generate_offsets(topo, // input topology
 topo["elements/offsets"]); // output node for offset array

Material Sets

Materials Sets contain material name and volume fraction information defined over a specified mesh topology.

A material set contains an mcarray that houses per-material, per-element volume fractions and a source topology over which these volume fractions are defined.
To conform to protocol, each entry in the matsets section must be an Object that contains the following information:

	matsets/matset/topology: “topo”

	matsets/matset/volume_fractions: (mcarray)

Fields

Fields are used to hold simulation state arrays associated with a mesh topology and (optionally) a mesh material set.

Each field entry can define an mcarray of material-independent values and/or an mcarray of per-material values.
These data arrays must be specified alongside a source space, which specifies the space over which the field values are defined (i.e. a topology for material-independent values and a material set for material-dependent values).
Minimally, each field entry must specify one of these data sets, the source space for the data set, an association type (e.g. per-vertex, per-element, or per-grid-function-entity), and a volume scaling type (e.g. volume-dependent, volume-independent).
Thus, to conform to protocol, each entry under the fields section must be an Object that adheres to one of the following descriptions:

	Material-Independent Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/topology: “topo”

	fields/field/values: (mcarray)

	Material-Dependent Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/matset: “matset”

	fields/field/matset_values: (mcarray)

	Mixed Fields:

	fields/field/association: “vertex” | “element”

	fields/field/grid_function: (mfem-style finite element collection name) (replaces “association”)

	fields/field/volume_dependent: “true” | “false”

	fields/field/topology: “topo”

	fields/field/values: (mcarray)

	fields/field/matset: “matset”

	fields/field/matset_values: (mcarray)

Topology Association for Field Values

For implicit topologies, the field values are associated with the topology by fast varying logical dimensions starting with i, then j, then k.

For explicit topologies, the field values are associated with the topology by assuming the order of the field values matches the order the elements are defined in the topology.

Adjacency Sets

Adjacency Sets are used to outline the shared geometry between subsets of domains in multi-domain meshes.

Each entry in the Adjacency Sets section is meant to encapsulate a set of adjacency information shared between domains.
Each individual adjacency set contains a source topology, an element association, and a list of adjacency groups.
An adjacency set’s contained groups describe adjacency information shared between subsets of domains, which is represented by a subset of adjacent neighbor domains IDs and a list of shared element IDs.
The fully-defined Blueprint schema for the adjsets entries looks like the following:

	adjsets/adjset/association: “vertex” | “element”

	adjsets/adjset/topology: “topo”

	adjsets/adjset/groups/group/neighbors: (integer array)

	adjsets/adjset/groups/group/values: (integer array)

State

Optional state information is used to provide metadata about the mesh. While the mesh blueprint is focused on describing a single domain of a domain decomposed mesh, the state info can be used to identify a specific mesh domain in the context of a domain decomposed mesh.

To conform, the state entry must be an Object and can have the following optional entries:

	state/time: (number)

	state/cycle: (number)

	state/domain_id: (integer)

Examples

The C++ conduit::blueprint::mesh::examples namespace and the Python conduit.blueprint.mesh.examples module provide
functions that generate example Mesh Blueprint data. For details on how to write these data sets to files, see the unit
tests that exercise these examples in src/tests/blueprint/t_blueprint_mesh_examples.cpp and the
mesh output example below. This section outlines the examples that demonstrate
the most commonly used mesh schemas.

basic

The simplest of the mesh examples, basic(), generates an homogenous example mesh with a configurable element
representation/type (see the mesh_type table below) spanned by a single scalar field that contains a unique
identifier for each mesh element. The function that needs to be called to generate an example of this type has the
following signature:

conduit::blueprint::mesh::examples::basic(const std::string &mesh_type, // element type/dimensionality
 index_t nx, // number of grid points along x
 index_t ny, // number of grid points along y
 index_t nz, // number of grid points along z (3d only)
 Node &res); // result container

The element representation, type, and dimensionality are all configured through the mesh_type argument. The
supported values for this parameter and their corresponding effects are outlined in the table below:

	Mesh Type

	Dimensionality

	Coordset Type

	Topology Type

	Element Type

	uniform

	2d/3d

	implicit

	implicit

	quad/hex

	rectilinear

	2d/3d

	implicit

	implicit

	quad/hex

	structured

	2d/3d

	explicit

	implicit

	quad/hex

	tris

	2d

	explicit

	explicit

	tri

	quads

	2d

	explicit

	explicit

	quad

	polygons

	2d

	explicit

	explicit

	polygon

	tets

	3d

	explicit

	explicit

	tet

	hexs

	3d

	explicit

	explicit

	hex

	polyhedra

	3d

	explicit

	explicit

	polyhedron

The remainder of this section demonstrates each of the different basic() mesh types, outlining
each type with a simple example that (1) presents the generating call, (2) shows the results of the
call in Blueprint schema form, and (3) displays the corresponding graphical rendering of this schema.

Uniform

	Usage Example

// create container node
Node mesh;
// generate simple uniform 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("uniform", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "uniform",
 "dims":
 {
 "i": 3,
 "j": 3
 },
 "origin":
 {
 "x": -10.0,
 "y": -10.0
 },
 "spacing":
 {
 "dx": 10.0,
 "dy": 10.0
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "uniform",
 "coordset": "coords"
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0]
 }
 }
}

	Visual

[image: _images/basic_hex_2d_render.png]
Pseudocolor plot of basic (mesh type ‘uniform’)

Rectilinear

	Usage Example

Node mesh;
// generate simple rectilinear 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("rectilinear", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "rectilinear",
 "values":
 {
 "x": [-10.0, 0.0, 10.0],
 "y": [-10.0, 0.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "rectilinear",
 "coordset": "coords"
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0]
 }
 }
}

	Visual

[image: _images/basic_hex_2d_render.png]
Pseudocolor plot of basic (mesh type ‘rectilinear’)

Structured

	Usage Example

// create container node
Node mesh;
// generate simple structured 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("structured", 3, 3, 1, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "structured",
 "coordset": "coords",
 "elements":
 {
 "dims":
 {
 "i": 2,
 "j": 2
 }
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0]
 }
 }
}

	Visual

[image: _images/basic_hex_2d_render.png]
Pseudocolor plot of basic (mesh type ‘structured’)

Tris

	Usage Example

// create container node
Node mesh;
// generate simple explicit tri-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("tris", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "tri",
 "connectivity": [0, 3, 4, 0, 1, 4, 1, 4, 5, 1, 2, 5, 3, 6, 7, 3, 4, 7, 4, 7, 8, 4, 5, 8]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
 }
 }
}

	Visual

[image: _images/basic_tet_2d_render.png]
Pseudocolor plot of basic (mesh type ‘tris’)

Quads

	Usage Example

// create container node
Node mesh;
// generate simple explicit quad-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("quads", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "quad",
 "connectivity": [0, 3, 4, 1, 1, 4, 5, 2, 3, 6, 7, 4, 4, 7, 8, 5]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0]
 }
 }
}

	Visual

[image: _images/basic_hex_2d_render.png]
Pseudocolor plot of basic (mesh type ‘quads’)

Polygons

	Usage Example

// create container node
Node mesh;
// generate simple explicit poly-based 2d 'basic' mesh
conduit::blueprint::mesh::examples::basic("polygons", 3, 3, 0, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "polygonal",
 "connectivity": [4, 0, 3, 4, 1, 4, 1, 4, 5, 2, 4, 3, 6, 7, 4, 4, 4, 7, 8, 5]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0]
 }
 }
}

	Visual

[image: _images/basic_hex_2d_render.png]
Pseudocolor plot of basic (mesh type ‘polygons’)

Tets

	Usage Example

// create container node
Node mesh;
// generate simple explicit tri-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("tets", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0],
 "z": [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "tet",
 "connectivity": [0, 4, 1, 13, 0, 3, 4, 13, 0, 12, 3, 13, 0, 9, 12, 13, 0, 10, 9, 13, 0, 1, 10, 13, 1, 5, 2, 14, 1, 4, 5, 14, 1, 13, 4, 14, 1, 10, 13, 14, 1, 11, 10, 14, 1, 2, 11, 14, 3, 7, 4, 16, 3, 6, 7, 16, 3, 15, 6, 16, 3, 12, 15, 16, 3, 13, 12, 16, 3, 4, 13, 16, 4, 8, 5, 17, 4, 7, 8, 17, 4, 16, 7, 17, 4, 13, 16, 17, 4, 14, 13, 17, 4, 5, 14, 17, 9, 13, 10, 22, 9, 12, 13, 22, 9, 21, 12, 22, 9, 18, 21, 22, 9, 19, 18, 22, 9, 10, 19, 22, 10, 14, 11, 23, 10, 13, 14, 23, 10, 22, 13, 23, 10, 19, 22, 23, 10, 20, 19, 23, 10, 11, 20, 23, 12, 16, 13, 25, 12, 15, 16, 25, 12, 24, 15, 25, 12, 21, 24, 25, 12, 22, 21, 25, 12, 13, 22, 25, 13, 17, 14, 26, 13, 16, 17, 26, 13, 25, 16, 26, 13, 22, 25, 26, 13, 23, 22, 26, 13, 14, 23, 26]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0]
 }
 }
}

	Visual

[image: _images/basic_tet_3d_render.png]
Pseudocolor plot of basic (mesh type ‘tets’)

Hexs

	Usage Example

// create container node
Node mesh;
// generate simple explicit quad-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("hexs", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0],
 "z": [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "hex",
 "connectivity": [0, 1, 4, 3, 9, 10, 13, 12, 1, 2, 5, 4, 10, 11, 14, 13, 3, 4, 7, 6, 12, 13, 16, 15, 4, 5, 8, 7, 13, 14, 17, 16, 9, 10, 13, 12, 18, 19, 22, 21, 10, 11, 14, 13, 19, 20, 23, 22, 12, 13, 16, 15, 21, 22, 25, 24, 13, 14, 17, 16, 22, 23, 26, 25]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
 }
 }
}

	Visual

[image: _images/basic_hex_3d_render.png]
Pseudocolor plot of basic (mesh type ‘hexs’)

Polyhedra

	Usage Example

// create container node
Node mesh;
// generate simple explicit poly-based 3d 'basic' mesh
conduit::blueprint::mesh::examples::basic("polyhedra", 3, 3, 3, mesh);
// print out results
mesh.print();

	Result

{
 "coordsets":
 {
 "coords":
 {
 "type": "explicit",
 "values":
 {
 "x": [-10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0, -10.0, 0.0, 10.0],
 "y": [-10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0],
 "z": [-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0]
 }
 }
 },
 "topologies":
 {
 "mesh":
 {
 "type": "unstructured",
 "coordset": "coords",
 "elements":
 {
 "shape": "polyhedral",
 "connectivity": [6, 4, 0, 4, 1, 3, 4, 0, 1, 9, 10, 4, 1, 3, 10, 12, 4, 0, 9, 4, 13, 4, 4, 13, 3, 12, 4, 9, 10, 13, 12, 6, 4, 1, 5, 2, 4, 4, 1, 2, 10, 11, 4, 2, 4, 11, 13, 4, 1, 10, 5, 14, 4, 5, 14, 4, 13, 4, 10, 11, 14, 13, 6, 4, 3, 7, 4, 6, 4, 3, 4, 12, 13, 4, 4, 6, 13, 15, 4, 3, 12, 7, 16, 4, 7, 16, 6, 15, 4, 12, 13, 16, 15, 6, 4, 4, 8, 5, 7, 4, 4, 5, 13, 14, 4, 5, 7, 14, 16, 4, 4, 13, 8, 17, 4, 8, 17, 7, 16, 4, 13, 14, 17, 16, 6, 4, 9, 13, 10, 12, 4, 9, 10, 18, 19, 4, 10, 12, 19, 21, 4, 9, 18, 13, 22, 4, 13, 22, 12, 21, 4, 18, 19, 22, 21, 6, 4, 10, 14, 11, 13, 4, 10, 11, 19, 20, 4, 11, 13, 20, 22, 4, 10, 19, 14, 23, 4, 14, 23, 13, 22, 4, 19, 20, 23, 22, 6, 4, 12, 16, 13, 15, 4, 12, 13, 21, 22, 4, 13, 15, 22, 24, 4, 12, 21, 16, 25, 4, 16, 25, 15, 24, 4, 21, 22, 25, 24, 6, 4, 13, 17, 14, 16, 4, 13, 14, 22, 23, 4, 14, 16, 23, 25, 4, 13, 22, 17, 26, 4, 17, 26, 16, 25, 4, 22, 23, 26, 25]
 }
 }
 },
 "fields":
 {
 "field":
 {
 "association": "element",
 "topology": "mesh",
 "volume_dependent": "false",
 "values": [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
 }
 }
}

	Visual

[image: _images/basic_hex_3d_render.png]
Pseudocolor plot of basic (mesh type ‘polyhedra’)

braid

[image: _images/braid_render.png]
Pseudocolor plot of a 3D braid example braid field

The braid() generates example meshes that cover the range of coordinate sets and topologies supported by the Mesh Blueprint.

The example datasets include a vertex-centered scalar field braid, an element-centered scalar field radial and
a vertex-centered vector field vel.

conduit::blueprint::mesh::examples::braid(const std::string &mesh_type,
 index_t nx,
 index_t ny,
 index_t nz,
 Node &res);

Here is a list of valid strings for the mesh_type argument:

	Mesh Type

	Description

	uniform

	2d or 3d uniform grid
(implicit coords, implicit topology)

	rectilinear

	2d or 3d rectilinear grid
(implicit coords, implicit topology)

	structured

	2d or 3d structured grid
(explicit coords, implicit topology)

	point

	2d or 3d unstructured mesh of point elements
(explicit coords, explicit topology)

	lines

	2d or 3d unstructured mesh of line elements
(explicit coords, explicit topology)

	tris

	2d unstructured mesh of triangle elements
(explicit coords, explicit topology)

	quads

	2d unstructured mesh of quadrilateral elements
(explicit coords, explicit topology)

	tets

	3d unstructured mesh of tetrahedral elements
(explicit coords, explicit topology)

	hexs

	3d unstructured mesh of hexahedral elements
(explicit coords, explicit topology)

nx, ny, nz specify the number of elements in the x, y, and z directions.

nz is ignored for 2d-only examples.

The resulting data is placed the Node res, which is passed in via reference.

spiral

[image: _images/spiral_render.png]
Pseudocolor and Contour plots of the spiral example dist field.

The sprial() function generates a multi-domain mesh composed of 2D square
domains with the area of successive fibonacci numbers. The result estimates the
Golden spiral [https://en.wikipedia.org/wiki/Golden_spiral].

The example dataset provides a vertex-centered scalar field dist that estimates the distance from
each vertex to the Golden spiral.

conduit::blueprint::mesh::examples::spiral(conduit::index_t ndomains,
 Node &res);

ndomains specifies the number of domains to generate, which is also the number of entries from fibonacci sequence used.

The resulting data is placed the Node res, which is passed in via reference.

julia

[image: _images/julia_render.png]
Pseudocolor plot of the julia example iter field

The julia() function creates a uniform grid that visualizes
Julia set fractals [https://en.wikipedia.org/wiki/Julia_set].

The example dataset provides an element-centered scalar field iter that represents the number of iterations
for each point tested or zero if not found in the set.

conduit::blueprint::mesh::examples::julia(index_t nx,
 index_t ny,
 float64 x_min,
 float64 x_max,
 float64 y_min,
 float64 y_max,
 float64 c_re,
 float64 c_im,
 Node &res);

nx, ny specify the number of elements in the x and y directions.

x_min, x_max, y_min, y_max specify the x and y extents.

c_re, c_im specify real and complex parts of the constant used.

The resulting data is placed the Node res, which is passed in via reference.

polytess

[image: _images/polytess_render.png]
Pseudocolor plot of the polytess example level field.

The polytess() function generates a polygonal tesselation in the 2D
plane comprised of octogons and squares (known formally as a two-color
truncated square tiling [https://en.wikipedia.org/wiki/Truncated_square_tiling]).

The scalar element-centered field level defined in the result mesh associates each element with its
topological distance from the center of the tesselation.

conduit::blueprint::mesh::examples::polytess(index_t nlevels,
 Node &res);

nlevels specifies the number of tesselation levels/layers to generate. If this value is specified
as 1 or less, only the central tesselation level (i.e. the octogon in the center of the geometry) will
be generated in the result.

The resulting data is placed the Node res, which is passed in via reference.

miscellaneous

This section doesn’t overview any specific example in the conduit::blueprint::mesh::examples namespace,
but rather provides a few additional code samples to help with various common tasks. Each subsection covers
a specific task and presents how it can be accomplished using a function or set of functions in Conduit
and/or the Mesh Blueprint library.

Outputting Meshes for Visualization

Suppose that you have an arbitrary Blueprint mesh that you want to output from a running code and
subsequently visualize using a visualization tool (e.g. VisIt [https://wci.llnl.gov/simulation/computer-codes/visit]).
Provided that your mesh is sufficiently simple (see the note at the end of this section for details),
you can output your mesh using one of the following conduit::relay library functions:

// saves the given mesh to disk at the given path (using the extension
// suffix in the path to inform the output data protocol)
conduit::relay::io_blueprint::save(const conduit::Node &mesh,
 const std::string &path);

// saves the given mesh to disk at the given path with the given explicit
// output data protocol (e.g. "json", "hdf5")
conduit::relay::io_blueprint::save(const conduit::Node &mesh,
 const std::string &path,
 const std::string &protocol);

It’s important to note that both of these functions expect the given path to have
a valid extension to properly output results. The valid extensions for these
functions are as follows:

	.blueprint_root (JSON Extension)

	.blueprint_root_hdf5 (HDF5 Extension)

Files output from these functions can be opened and subsequently visualized
directly using VisIt [https://wci.llnl.gov/simulation/computer-codes/visit].

Note

This automatic index generation and save functionality is under development.
It handles most basic cases, but only supports json and hdf5 output
protocols and has limited multi-domain support. We are working on API changes
and a more robust capability for future versions of Conduit.

Detailed Uniform Example

This snippet provides a complete C++ example that demonstrates:

	Describing a uniform mesh in a Conduit tree

	Verifying the tree conforms to the Mesh Blueprint

	Saving the result to a JSON file that VisIt can open

// create a Conduit node to hold our mesh data
Node mesh;

// create the coordinate set
mesh["coordsets/coords/type"] = "uniform";
mesh["coordsets/coords/dims/i"] = 3;
mesh["coordsets/coords/dims/j"] = 3;
// add origin and spacing to the coordset (optional)
mesh["coordsets/coords/origin/x"] = -10.0;
mesh["coordsets/coords/origin/y"] = -10.0;
mesh["coordsets/coords/spacing/dx"] = 10.0;
mesh["coordsets/coords/spacing/dy"] = 10.0;

// add the topology
// this case is simple b/c it's implicitly derived from the coordinate set
mesh["topologies/topo/type"] = "uniform";
// reference the coordinate set by name
mesh["topologies/topo/coordset"] = "coords";

// add a simple element-associated field
mesh["fields/ele_example/association"] = "element";
// reference the topology this field is defined on by name
mesh["fields/ele_example/topology"] = "topo";
// set the field values, for this case we have 4 elements
mesh["fields/ele_example/values"].set(DataType::float64(4));

float64 *ele_vals_ptr = mesh["fields/ele_example/values"].value();

for(int i=0;i<4;i++)
{
 ele_vals_ptr[i] = float64(i);
}

// add a simple vertex-associated field
mesh["fields/vert_example/association"] = "vertex";
// reference the topology this field is defined on by name
mesh["fields/vert_example/topology"] = "topo";
// set the field values, for this case we have 9 vertices
mesh["fields/vert_example/values"].set(DataType::float64(9));

float64 *vert_vals_ptr = mesh["fields/vert_example/values"].value();

for(int i=0;i<9;i++)
{
 vert_vals_ptr[i] = float64(i);
}

// make sure we conform:
Node verify_info;
if(!blueprint::mesh::verify(mesh, verify_info))
{
 std::cout << "Verify failed!" << std::endl;
 verify_info.print();
}

// print out results
mesh.print();

// save our mesh to a json that can be read by VisIt
conduit::relay::io_blueprint::save(mesh, "basic_detailed_uniform.blueprint_root");

Building

This page provides details on several ways to build Conduit from source.

For the shortest path from zero to Conduit, see Quick Start.

If you are building features that depend on third party libraries we recommend using uberenv which leverages Spack or Spack directly.
We also provide info about building for known HPC clusters using uberenv.
and a Docker example that leverages Spack.

Obtain the Conduit source

Clone the Conduit repo from Github:

git clone --recursive https://github.com/llnl/conduit.git

--recursive is necessary because we are using a git submodule to pull in BLT (https://github.com/llnl/blt).
If you cloned without --recursive, you can checkout this submodule using:

cd conduit
git submodule init
git submodule update

Configure a build

Conduit uses CMake for its build system. These instructions assume cmake is in your path.
We recommend CMake 3.9 or newer, for more details see Supported CMake Versions.

config-build.sh is a simple wrapper for the cmake call to configure conduit.
This creates a new out-of-source build directory build-debug and a directory for the install install-debug.
It optionally includes a host-config.cmake file with detailed configuration options.

cd conduit
./config-build.sh

Build, test, and install Conduit:

cd build-debug
make -j 8
make test
make install

Build Options

The core Conduit library has no dependencies outside of the repo, however Conduit provides optional support for I/O and Communication (MPI) features that require externally built third party libraries.

Conduit’s build system supports the following CMake options:

	BUILD_SHARED_LIBS - Controls if shared (ON) or static (OFF) libraries are built. (default = ON)

	ENABLE_TESTS - Controls if unit tests are built. (default = ON)

	ENABLE_EXAMPLES - Controls if examples are built. (default = ON)

	ENABLE_UTILS - Controls if utilities are built. (default = ON)

	ENABLE_TESTS - Controls if unit tests are built. (default = ON)

	ENABLE_DOCS - Controls if the Conduit documentation is built (when sphinx and doxygen are found). (default = ON)

	ENABLE_COVERAGE - Controls if code coverage compiler flags are used to build Conduit. (default = OFF)

	ENABLE_PYTHON - Controls if the Conduit Python module is built. (default = OFF)

The Conduit Python module can be built for Python 2 or Python 3. To select a specific Python, set the CMake variable PYTHON_EXECUTABLE to path of the desired python binary. The Conduit Python module requires Numpy. The selected Python instance must provide Numpy, or PYTHONPATH must be set to include a Numpy install compatible with the selected Python install.
Note: You can not use compiled Python modules built with Python 2 in Python 3 and vice versa. You need to compile against the version you expect to use.

	ENABLE_MPI - Controls if the conduit_relay_mpi library is built. (default = OFF)

We are using CMake’s standard FindMPI logic. To select a specific MPI set the CMake variables MPI_C_COMPILER and MPI_CXX_COMPILER, or the other FindMPI options for MPI include paths and MPI libraries.

To run the mpi unit tests on LLNL’s LC platforms, you may also need change the CMake variables MPIEXEC and MPIEXEC_NUMPROC_FLAG, so you can use srun and select a partition. (for an example see: src/host-configs/chaos_5_x86_64.cmake)

Warning

Starting in CMake 3.10, the FindMPI MPIEXEC variable was changed to MPIEXEC_EXECUTABLE. FindMPI will still set MPIEXEC, but any attempt to change it before calling FindMPI with your own cached value of MPIEXEC will not survive, so you need to set MPIEXEC_EXECUTABLE [reference] [https://cmake.org/cmake/help/v3.10/module/FindMPI.html].

	HDF5_DIR - Path to a HDF5 install (optional).

Controls if HDF5 I/O support is built into conduit_relay.

	SILO_DIR - Path to a Silo install (optional).

Controls if Silo I/O support is built into conduit_relay. When used, the following CMake variables must also be set:

	HDF5_DIR - Path to a HDF5 install. (Silo support depends on HDF5)

	ADIOS_DIR - Path to an ADIOS install (optional).

Controls if ADIOS I/O support is built into conduit_relay. When used, the following CMake variables must also be set:

	HDF5_DIR - Path to a HDF5 install. (ADIOS support depends on HDF5)

	BLT_SOURCE_DIR - Path to BLT. (default = “blt”)

Defaults to “blt”, where we expect the blt submodule. The most compelling reason to override is to share a single instance of BLT across multiple projects.

Installation Path Options

Conduit’s build system provides an install target that installs the Conduit libraires, headers, python modules, and documentation. These CMake options allow you to control install destination paths:

	CMAKE_INSTALL_PREFIX - Standard CMake install path option (optional).

	PYTHON_MODULE_INSTALL_PREFIX - Path to install Python modules into (optional).

When present and ENABLE_PYTHON is ON, Conduit’s Python modules will be installed to ${PYTHON_MODULE_INSTALL_PREFIX} directory instead of ${CMAKE_INSTALL_PREFIX}/python-modules.

Host Config Files

To handle build options, third party library paths, etc we rely on CMake’s initial-cache file mechanism.

cmake -C config_file.cmake

We call these initial-cache files host-config files, since we typically create a file for each platform or specific hosts if necessary.

The config-build.sh script uses your machine’s hostname, the SYS_TYPE environment variable, and your platform name (via uname) to look for an existing host config file in the host-configs directory at the root of the conduit repo. If found, it passes the host config file to CMake via the -C command line option.

cmake {other options} -C host-configs/{config_file}.cmake ../

You can find example files in the host-configs directory.

These files use standard CMake commands. To properly seed the cache, CMake set commands need to specify CACHE as follows:

set(CMAKE_VARIABLE_NAME {VALUE} CACHE PATH "")

Building Conduit and Third Party Dependencies

We use Spack (http://software.llnl.gov/spack) to help build Conduit’s third party dependencies on OSX and Linux. Conduit builds on Windows as well, but there is no automated process to build dependencies necessary to support Conduit’s optional features.

Uberenv (scripts/uberenv/uberenv.py) automates fetching spack, building and installing third party dependencies, and can optionally install Conduit as well. To automate the full install process, Uberenv uses the Conduit Spack package along with extra settings such as Spack compiler and external third party package details for common HPC platforms.

Building Third Party Dependencies for Development

Note

Conduit developers use bootstrap-env.sh and scripts/uberenv/uberenv.py to setup third party libraries for Conduit development.
For info on how to use the Conduit Spack package see Building Conduit and its Dependencies with Spack.

On OSX and Linux, you can use bootstrap-env.sh (located at the root of the conduit repo) to help setup your development environment. This script uses scripts/uberenv/uberenv.py, which leverages Spack to build all of the external third party libraries and tools used by Conduit. Fortran support is optional and all dependencies should build without a fortran compiler. After building these libraries and tools, it writes an initial host-config file and adds the Spack built CMake binary to your PATH so can immediately call the config-build.sh helper script to configure a conduit build.

#build third party libs using spack
source bootstrap-env.sh

#copy the generated host-config file into the standard location
cp uberenv_libs/`hostname`*.cmake to host-configs/

run the configure helper script
./config-build.sh

or you can run the configure helper script and give it the
path to a host-config file
./config-build.sh uberenv_libs/`hostname`*.cmake

When bootstrap-env.sh runs uberenv.py, all command line arguments are forwarded:

python scripts/uberenv/uberenv.py $@

So any options to bootstrap-env.sh are effectively uberenv.py options.

Uberenv Options for Building Third Party Dependencies

uberenv.py has a few options that allow you to control how dependencies are built:

	Option

	Description

	Default

	–prefix

	Destination directory

	uberenv_libs

	–spec

	Spack spec

	linux: %gcc
osx: %clang

	–spack-config-dir

	Folder with Spack settings files

	linux: (empty)
osx: scripts/uberenv/spack_configs/darwin/

	-k

	Ignore SSL Errors

	False

	–install

	Fully install conduit, not just dependencies

	False

	–run_tests

	Invoke tests during build and against install

	False

The -k option exists for sites where SSL certificate interception undermines fetching
from github and https hosted source tarballs. When enabled, uberenv.py clones spack using:

git -c http.sslVerify=false clone https://github.com/llnl/spack.git

And passes -k to any spack commands that may fetch via https.

Default invocation on Linux:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %gcc

Default invocation on OSX:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %clang \
 --spack-config-dir scripts/uberenv/spack_configs/darwin/

The uberenv –install installs conduit@master (not just the development dependencies):

python scripts/uberenv/uberenv.py --install

To run tests during the build process to validate the build and install, you can use the --run_tests option:

python scripts/uberenv/uberenv.py --install \
 --run_tests

For details on Spack’s spec syntax, see the Spack Specs & dependencies [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] documentation.

You can edit yaml files under scripts/uberenv/spack_config/{platform} or use the –spack-config-dir option to specify a directory with compiler and packages yaml files to use with Spack. See the Spack Compiler Configuration [http://spack.readthedocs.io/en/latest/getting_started.html#manual-compiler-configuration]
and Spack System Packages [http://spack.readthedocs.io/en/latest/getting_started.html#system-packages]
documentation for details.

For OSX, the defaults in spack_configs/darwin/compilers.yaml are X-Code’s clang and gfortran from https://gcc.gnu.org/wiki/GFortranBinaries#MacOS.

Note

The bootstrapping process ignores ~/.spack/compilers.yaml to avoid conflicts
and surprises from a user’s specific Spack settings on HPC platforms.

When run, uberenv.py checkouts a specific version of Spack from github as spack in the
destination directory. It then uses Spack to build and install Conduit’s dependencies into
spack/opt/spack/. Finally, it generates a host-config file {hostname}.cmake in the
destination directory that specifies the compiler settings and paths to all of the dependencies.

Building with Uberenv on Known HPC Platforms

To support testing and installing on common platforms, we maintain sets of Spack compiler and package settings
for a few known HPC platforms. Here are the commonly tested configurations:

	System

	OS

	Tested Configurations (Spack Specs)

	pascal.llnl.gov

	Linux: TOSS3

	%gcc

%gcc~shared

	lassen.llnl.gov

	Linux: BlueOS

	%clang@coral~python~fortran

	cori.nersc.gov

	Linux: SUSE / CNL

	%gcc

See scripts/spack_build_tests/ for the exact invocations used to test on these platforms.

Building Conduit and its Dependencies with Spack

As of 1/4/2017, Spack’s develop branch includes a recipe [https://github.com/LLNL/spack/blob/develop/var/spack/repos/builtin/packages/conduit/package.py] to build and install Conduit.

To install the latest released version of Conduit with all options (and also build all of its dependencies as necessary) run:

spack install conduit

To build and install Conduit’s github master branch run:

spack install conduit@master

The Conduit Spack package provides several variants [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] that customize the options and dependencies used to build Conduit:

	Variant

	Description

	Default

	shared

	Build Conduit as shared libraries

	ON (+shared)

	cmake

	Build CMake with Spack

	ON (+cmake)

	python

	Enable Conduit Python support

	ON (+python)

	mpi

	Enable Conduit MPI support

	ON (+mpi)

	hdf5

	Enable Conduit HDF5 support

	ON (+hdf5)

	silo

	Enable Conduit Silo support

	ON (+silo)

	adios

	Enable Conduit ADIOS support

	OFF (+adios)

	doc

	Build Conduit’s Documentation

	OFF (+docs)

Variants are enabled using + and disabled using ~. For example, to build Conduit with the minimum set of options (and dependencies) run:

spack install conduit~python~mpi~hdf5~silo~docs

You can specify specific versions of a dependency using ^. For Example, to build Conduit with Python 3:

spack install conduit+python ^python@3

Supported CMake Versions

We recommend CMake 3.9 or newer. We test building Conduit with CMake 3.3.1, 3.8.1 and 3.9.4. Other versions of CMake may work, however CMake 3.4.x to 3.7.x have specific issues with finding and using HDF5 and Python and C++11 support.

Using Conduit in Another Project

Under src/examples there are examples demonstrating how to use Conduit in a CMake-based build system (using-with-cmake) and via a Makefile (using-with-make).

Building Conduit in a Docker Container

Under src/examples/docker/ubuntu there is an example Dockerfile which can be used to create an ubuntu-based docker image with a build of the Conduit. There is also a script that demonstrates how to build a Docker image from the Dockerfile (example_build.sh) and a script that runs this image in a Docker container (example_run.sh). The Conduit repo is cloned into the image’s file system at /conduit, the build directory is /conduit/build-debug, and the install directory is /conduit/install-debug.

Notes for Cray systems

HDF5 and gtest use runtime features such as dlopen. Because of this, building static on Cray systems commonly yields the following flavor of compiler warning:

Using 'zzz' in statically linked applications requires at runtime the shared libraries from the glibc version used for linking

You can avoid related linking warnings by adding the -dynamic compiler flag, or by setting the CRAYPE_LINK_TYPE environment variable:

export CRAYPE_LINK_TYPE=dynamic

Shared Memory Maps are read only [https://pubs.cray.com/content/S-0005/CLE%206.0.UP02/xctm-series-dvs-administration-guide-cle-60up02-s-0005/dvs-caveats]
on Cray systems, so updates to data using Node::mmap will not be seen between processes.

Glossary

This page aims to provide succinct descriptions of important concepts in Conduit.

children

Used for Node instances in the Object and List role interfaces. A Node may hold a set of indexed children (List role), or indexed and named children (Object role). In both of these cases the children of the Node can be accessed, or removed via their index. Methods related to this concept include:

	Node::number_of_children()

	Node::child(index_t)

	Node::child_ptr(index_t)

	Node::operator=(index_t)

	Node::remove(index_t)

	Schema::number_of_children()

	Schema::child(index_t)

	Schema::child_ptr(index_t)

	Schema::operator=(index_t)

	Schema::remove(index_t)

paths

Used for Node instances in Object role interface. In the Object role, a Node has a collection of indexed and named children. Access by name is done via a path. The path is a forward-slash separated URI, where each segment maps to Node in a hierarchal tree. Methods related to this concept include:

	Node::fetch(string)

	Node::fetch_ptr(string)

	Node::operator=(string)

	Node::has_path(string)

	Node::remove(string)

	Schema::fetch(string)

	Schema::fetch_child(string)

	Schema::fetch_ptr(string)

	Schema::operator=(string)

	Schema::has_path(string)

	Schema::remove(string)

external

Concept used throughout the Conduit API to specify ownership for passed data.
When using Node constructors, Generators, or Node::set calls, you have the option of using an external variant. When external is specified, a Node does not own (allocate or deallocate) the memory for the data it holds.

Developer Documentation

Source Code Repo Layout

	src/libs/

	conduit/ - Main Conduit library source

	relay/ - Relay libraries source

	blueprint/ - Blueprint library source

	src/tests/

	conduit/ - Unit tests for the main Conduit library

	relay/ - Unit tests for Conduit Relay libraries

	blueprint/ - Unit tests for Blueprint library

	thirdparty/ - Unit tests for third party libraries

	src/examples/ - Basic examples related to building and using Conduit

	src/docs/ - Documentation

	src/thirdparty_builtin/ - Third party libraries we build and manage directly

Build System Info

Configuring with CMake

See Building in the User Documentation.

Important CMake Targets

	make: Builds Conduit.

	make test: Runs unit tests.

	make docs: Builds sphinx and doxygen documentation.

	make install: Installs conduit libraries, headers, and documentation to CMAKE_INSTALL_PREFIX

Adding a Unit Test

	Create a test source file in src/tests/{lib_name}/

	All test source files should have a t_ prefix on their file name to make them easy to identify.

	Add the test to build system by editing src/tests/{lib_name}/CMakeLists.txt

Running Unit Tests via Valgrind

We can use ctest’s built-in valgrind support to check for memory leaks in unit tests. Assuming valgrind is automatically detected when you run CMake to configure conduit, you can check for leaks by running:

ctest -D ExperimentalBuild
ctest -D ExperimentalMemCheck

The build system is setup to use src/cmake/valgrind.supp to filter memcheck results. We don’t yet have all spurious issues suppressed, expect to see leaks reported for python and mpi tests.

BLT

Conduit’s CMake-based build system uses BLT (https://github.com/llnl/blt).

Git Development Workflow

Conduit’s primary source repository and issue tracker are hosted on github:

https://github.com/llnl/conduit

We are using a Github Flow model, which is a simpler variant of the confusingly similar sounding Git Flow model.

Here are the basics:

	Development is done on topic branches off the master.

	Merge to master is only done via a pull request.

	The master should always compile and pass all tests.

	Releases are tagged off of master.

More details on GitHub Flow:

https://guides.github.com/introduction/flow/index.html

Here are some other rules to abide by:

	If you have write permissions for the Conduit repo, you can merge your own pull requests.

	After completing all intended work on branch, please delete the remote branch after merging to master. (Github has an option to do this after you merge a pull request.)

Releases

Source distributions for Conduit releases are hosted on github:

https://github.com/LLNL/conduit/releases

Note

Conduit uses BLT [https://github.com/LLNL/blt] as its core CMake build system. We leverage BLT as a git submodule, however github does not include submodule contents in its automatically created source tarballs. To avoid confusion, starting with v0.3.0 we provide our own source tarballs that include BLT.

v0.4.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.4.0/conduit-v0.4.0-src-with-blt.tar.gz]

Highlights

(Extracted from Conduit’s Changelog)

Added

	General

	Added Generic IO Handle class (relay::io::IOHandle) with C++ and Python APIs, tests, and docs.

	Added rename_child method to Schema and Node

	Added generation and install of conduit_config.mk for using-with-make example

	Added datatype helpers for long long and long double

	Added error for empty path fetch

	Added C functions for setting error, warning, info handlers.

	Added limited set of C bindings for DataType

	Added C bindings for relay IO

	Added several more functions to conduit node python interfaces

	Blueprint

	Added implicit point topology docs and example

	Added julia and spiral mesh bp examples

	Added mesh topology transformations to blueprint

	Added polygonal mesh support to mesh blueprint

	Added verify method for mesh blueprint nestset

	Relay

	Added ADIOS Support, enabling ADIOS read and write of Node objects.

	Added a relay::mpi::io library that mirrors the API of relay::io, except that all functions take an MPI communicator. The functions are implemented in parallel for the ADIOS protocol. For other protocols, they will behave the same as the serial functions in relay::io. For the ADIOS protocol, the save() and save_merged() functions operate collectively within a communicator to enable multiple MPI ranks to save data to a single file as separate “domains”.

	Added an add_time_step() function to that lets the caller append data collectively to an existing ADIOS file

	Added a function to query the number of time steps and the number of domains in a ADIOS file.

	Added versions of save and save_merged that take an options node.

	Added C API for new save, save_merged functions.

	Added method to list an HDF5 group’s child names

	Added save and append methods to the HDF5 I/O interface

	Added docs and examples for relay io

Changed

	General

	Changed mapping of c types to bit-width style to be compatible with C++11 std bit-width types when C++11 is enabled

	Several improvements to uberenv, our automated build process, and building directions

	Upgraded the type system with more explicit signed support

	Relay

	Improvements to the Silo mesh writer

	Refactor to support both relay::io and relay::mpi::io namespaces.

	Refactor to add support for steps and domains to I/O interfaces

	Changed to only use libver latest setting for for hdf5 1.8 to minimize compatibility issues

Fixed

	General

	Fixed bugs with std::vector gap methods

	Fixed A few C function names in conduit_node.h

	Fixed bug in python that was requesting unsigned array for signed cases

	Fixed issue with Node::diff failing for string data with offsets

	Fixes for building on BlueOS with the xl compiler

	Blueprint

	Fixed validity status for blueprint functions

	Fixed improper error reporting for Blueprint references

	Relay

	Relay I/O exceptions are now forwarded to python

	Fixed MPI send_with_schema bug when data was compact but not contiguous

	Switched to use MPI bit-width style data type enums in relay::mpi

v0.3.1

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.3.1/conduit-v0.3.1-src-with-blt.tar.gz]

Highlights

	General

	Added new Node::diff and Node::diff_compatible methods

	Updated uberenv to use a newer spack and removed several custom packages

	C++ Node::set methods now take const pointers for data

	Added Python version of basic tutorial

	Expanded the Node Python Capsule API

	Added Python API bug fixes

	Fixed API exports for static libs on Windows

	Blueprint

	Mesh Protocol

	Removed unnecessary state member in the braid example

	Added Multi-level Array Protocol (conduit::blueprint::mlarray)

	Relay

	Added bug fixes for Relay HDF5 support on Windows

v0.3.0

	Source Tarball [https://github.com/LLNL/conduit/releases/download/v0.3.0/conduit-v0.3.0-src-with-blt.tar.gz]

Highlights

	General

	Moved to use BLT (https://github.com/llnl/blt) as our core CMake-based build system

	Bug fixes to support building on Visual Studio 2013

	Bug fixes for conduit::Node in the List Role

	Expose more of the Conduit API in Python

	Use ints instead of bools in the Conduit C-APIs for wider compiler compatibility

	Fixed memory leaks in conduit and conduit_relay

	Blueprint

	Mesh Protocol

	Added support for multi-material fields via matsets (volume fractions and per-material values)

	Added initial support for domain boundary info via adjsets for distributed-memory unstructured meshes

	Relay

	Major improvements conduit_relay I/O HDF5 support

	Add heuristics with knobs for controlling use of HDF5 compact datasets and compression support

	Improved error checking and error messages

	Major improvements to conduit_relay_mpi support

	Add support for reductions and broadcast

	Add support zero-copy pass to MPI for a wide set of calls

	Harden notion of known schema vs generic MPI support

v0.2.1

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.1.tar.gz]

Highlights

	General

	Added fixes to support static builds on BGQ using xlc and gcc

	Fixed missing install of fortran module files

	Eliminated separate fortran libs by moving fortran symbols into their associated main libs

	Changed Node::set_external to support const Node references

	Refactored path and file systems utils functions for clarity.

	Blueprint

	Fixed bug with verify of mesh/coords for rectilinear case

	Added support to the blueprint python module for the mesh and mcarray protocol methods

	Added stand alone blueprint verify executable

	Relay

	Updated the version of civetweb used to avoid dlopen issues with SSL for static builds

v0.2.0

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.0.tar.gz]

Highlights

	General

	Changes to clarify concepts in the conduit::Node API

	Added const access to conduit::Node children and a new NodeConstIterator

	Added support for building on Windows

	Added more Python, C, and Fortran API support

	Resolved several bugs across libraries

	Resolved compiler warnings and memory leaks

	Improved unit test coverage

	Renamed source and header files for clarity and to avoid potential conflicts with other projects

	Blueprint

	Added verify support for the mcarray and mesh protocols

	Added functions that create examples instances of mcarrays and meshes

	Added memory layout transform helpers for mcarrays

	Added a helper that creates a mesh blueprint index from a valid mesh

	Relay

	Added extensive HDF5 I/O support for reading and writing between HDF5 files and conduit Node trees

	Changed I/O protocol string names for clarity

	Refactored the relay::WebServer and the Conduit Node Viewer application

	Added entangle, a python script ssh tunneling solution

Presentations

Slides

	SciPy 2016 talk on Conduit (July 2016)

	Conduit Introduction (February 2015)

Talks

	SciPy 2016 talk on Conduit (July 2016) [https://youtu.be/3_GKjeRUPKg]

Interviews

	RCE HPC Podcast on Conduit (October 2015) [http://www.rce-cast.com/Podcast/rce-101-conduit.html]

Articles

	LLNL Article on the 2014-2015 Conduit Harvey Mudd CS Clinic Project (May 2015) [http://computation.llnl.gov/newsroom/hpc-partnership-harvey-mudd-college-and-livermore]

License Info

Conduit License

Copyright (c) 2014-2018, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

LLNL-CODE-666778

All rights reserved.

This file is part of Conduit.

For details, see: http://software.llnl.gov/conduit/.

Please also read conduit/LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

	Neither the name of the LLNS/LLNL nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

	This notice is required to be provided under our contract with the U.S.
Department of Energy (DOE). This work was produced at Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with
the DOE.

	Neither the United States Government nor Lawrence Livermore National
Security, LLC nor any of their employees, makes any warranty, express
or implied, or assumes any liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately-owned rights.

	Also, reference herein to any specific commercial products, process,
or services by trade name, trademark, manufacturer or otherwise does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or Lawrence Livermore National Security, LLC, and
shall not be used for advertising or product endorsement purposes.

Third Party Builtin Libraries

Here is a list of the software components used by conduit in source form and the location of their respective license files in our source repo.

C and C++ Libraries

	gtest: From BLT - (BSD Style License)

	libb64: thirdparty_builtin/libb64/LICENSE (Public Domain)

	rapidjson: thirdparty_builtin/rapidjson/license.txt (MIT License)

	civetweb: thirdparty_builtin/civetweb-1.8/LICENSE.md (MIT License)

JavaScript Libraries

	fattable: src/libs/relay/web_clients/rest_client/resources/fattable/LICENSE (MIT License)

	pure: src/libs/relay/web_clients/rest_client/resources/pure/LICENSE.md (BSD Style License)

	d3: src/libs/relay/web_clients/rest_client/resources/d3/LICENSE (BSD Style License)

	jquery: /src/libs/relay/web_clients/wsock_test/resources/jquerty-license.txt (MIT License)

Fortran Libraries

	fruit: From BLT - (BSD Style License)

Build System

	CMake: http://www.cmake.org/licensing/ (BSD Style License)

	BLT: https://github.com/llnl/blt (BSD Style License)

	Spack: http://software.llnl.gov/spack (LGPL License)

Documentation

	doxygen: http://www.stack.nl/~dimitri/doxygen/index.html (GPL License)

	sphinx: http://sphinx-doc.org/ (BSD Style License)

	breathe: https://github.com/michaeljones/breathe (BSD Style License)

	rtd sphinx theme: https://github.com/snide/sphinx_rtd_theme/blob/master/LICENSE (MIT License)

Index

API Documentation

This set of documentation is extracted using Doxygen.

Node

Schema

DataType

Generator

DataArray

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Conduit

 		
 Quick Start

 		
 Installing Conduit and Third Party Dependencies

 		
 Using Conduit in Your Project

 		
 Learning Conduit

 		
 User Documentation

 		
 Conduit

 		
 C++ Tutorial

 		
 Python Tutorial

 		
 Relay

 		
 Relay I/O

 		
 Relay MPI

 		
 Blueprint

 		
 Protocol Details

 		
 Blueprint Interface

 		
 Building

 		
 Obtain the Conduit source

 		
 Configure a build

 		
 Build Options

 		
 Installation Path Options

 		
 Host Config Files

 		
 Building Conduit and Third Party Dependencies

 		
 Building Third Party Dependencies for Development

 		
 Building with Uberenv on Known HPC Platforms

 		
 Building Conduit and its Dependencies with Spack

 		
 Supported CMake Versions

 		
 Using Conduit in Another Project

 		
 Building Conduit in a Docker Container

 		
 Notes for Cray systems

 		
 Glossary

 		
 children

 		
 paths

 		
 external

 		
 Developer Documentation

 		
 Source Code Repo Layout

 		
 Build System Info

 		
 Configuring with CMake

 		
 Important CMake Targets

 		
 Adding a Unit Test

 		
 Running Unit Tests via Valgrind

 		
 BLT

 		
 Git Development Workflow

 		
 Releases

 		
 v0.4.0

 		
 Highlights

 		
 v0.3.1

 		
 Highlights

 		
 v0.3.0

 		
 Highlights

 		
 v0.2.1

 		
 Highlights

 		
 v0.2.0

 		
 Highlights

 		
 Presentations

 		
 Slides

 		
 Talks

 		
 Interviews

 		
 Articles

 		
 License Info

 		
 Conduit License

 		
 Third Party Builtin Libraries

 		
 Build System

 		
 Documentation

_images/basic_hex_2d_render.png
Y-Axis

-10

_images/basic_hex_3d_render.png

_images/basic_tet_2d_render.png
Y-Axis

-10

_images/basic_tet_3d_render.png

_images/polytess_render.png

_images/spiral_render.png

_images/braid_render.png

_images/julia_render.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

