

Conduit

Conduit: Simplified Data Exchange for HPC Simulations

Introduction

Conduit is an open source project from Lawrence Livermore National Laboratory that provides an intuitive model for describing hierarchical scientific data in C++, C, Fortran, and Python. It is used for data coupling between packages in-core, serialization, and I/O tasks.

Conduit’s Core API provides:

	A flexible way to describe hierarchal data:

A JSON-inspired data model for describing hierarchical in-core scientific data.

	A sane API to access hierarchal data:

A dynamic API for rapid construction and consumption of hierarchical objects.

Conduit is under active development and targets Linux, OSX, and Windows platforms. The C++ API underpins the other language APIs and currently has the most features. We are still filling out the C, Fortran, and Python APIs.

For more background, please see Presentations.

Unique Features

Conduit was built around the concept that an intuitive in-core data description capability simplifies many other common tasks in the HPC simulation eco-system. To this aim, Conduit’s Core API:

	Provides a runtime focused in-core data description API that does not require repacking or code generation.

	Supports a mix of externally owned and Conduit allocated memory semantics.

Conduit Project Resources

Online Documentation

http://software.llnl.gov/conduit/

Github Source Repo

https://github.com/llnl/conduit

Issue Tracker

https://github.com/llnl/conduit/issues

LLNL Collaboration Zone Bitbucket Server Source Repo (Mirror for LLNL Users)

https://lc.llnl.gov/bitbucket/projects/CON/repos/conduit/browse

Conduit Libraries

The conduit library provides Conduit’s core data API. The relay and blueprint libraries provide higher-level services built on top of the core API.

Note

Caveat Emptor: The APIs for relay and blueprint are still in flux.

conduit

	Provides Conduit’s Core API in C++ and subsets of Core API in Python, C, and Fortran.

	Optionally depends on Fortran and Python with NumPy

relay

	Provides:
	I/O functionally beyond simple binary, memory mapped, and json-based text file I/O.

	A light-weight web server for REST and WebSocket clients.

	Interfaces for MPI communication using conduit::Node instances as payloads.

	Optionally depends on silo, hdf5, szip and mpi

blueprint

	Provides interfaces for common higher-level conventions and data exchange protocols (eg. describing a “mesh”) using Conduit.

	No optional dependancies

See the User Documentation for more details on these libraries.

Contributors

	Cyrus Harrison (LLNL)

	Brian Ryujin (LLNL)

	Adam Kunen (LLNL)

	Kathleen Biagas (LLNL)

	Eric Brugger (LLNL)

	Aaron Black (LLNL)

	George Zagaris (LLNL)

	Kenny Weiss (LLNL)

	Matt Larsen (LLNL)

	Joe Ciurej (LLNL)

	George Aspesi (Harvey Mudd)

	Justin Bai (Harvey Mudd)

	Rupert Deese (Harvey Mudd)

	Linnea Shin (Harvey Mudd)

In 2014 and 2015 LLNL sponsored a Harvey Mudd Computer Science Clinic project focused on using Conduit in HPC Proxy apps. You can read about more details about the clinic project from this LLNL article:
http://computation.llnl.gov/newsroom/hpc-partnership-harvey-mudd-college-and-livermore

Conduit Documentation

	User Documentation
	Conduit

	Relay

	Blueprint

	Building

	Glossary

	Developer Documentation
	Source Code Repo Layout

	Build System Info

	Git Development Workflow

	Releases
	v0.2.1

	v0.2.0

	Presentations
	Slides

	Talks

	Interviews

	Articles

	License Info
	Conduit License

Indices and tables

	Index

	Search Page

User Documentation

	Conduit
	Tutorial
	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Accessing Numeric Data
	Accessing Scalars and Arrays

	Using Introspection and Conversion

	Generators
	Using Generator instances to parse JSON schemas

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

	Relay

	Blueprint
	Protocol Details
	mcarray
	Protocol

	Properties and Transforms

	Examples

	mesh
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topology

	Mixed Shape Toplogies

	Fields

	State

	Examples

	Blueprint Interface

	Building
	Getting Started

	Build Options

	Installation Path Options

	Host Config Files

	Bootstrapping Third Party Dependencies
	Uberenv Options for Building Third Party Dependencies

	Building Conduit and its Dependencies with Spack

	Using Conduit in Another Project

	Building Conduit in a Docker Container

	Glossary
	children

	paths

	external

Conduit

Tutorial

This short tutorial provides C++ examples that demonstrate the Conduit’s Core
API. Conduit’s unit tests (src/tests/{library_name}/) also provide a rich set
of examples for Conduit’s Core API and additional libraries.

	Basic Concepts
	Node basics

	Bitwidth Style Types

	Compatible Schemas

	Accessing Numeric Data
	Accessing Scalars and Arrays

	Using Introspection and Conversion

	Generators
	Using Generator instances to parse JSON schemas

	Compacting Nodes

	Data Ownership
	set vs set_external

	Node Update Methods

	Error Handling
	Default Error Handlers

	Using Custom Error Handlers

	Using Restoring Default Handlers

Basic Concepts

Node basics

The Node class is the primary object in conduit.

Think of it as a hierarchical variant object.

Node n;
n["my"] = "data";
n.print();

{
 "my": "data"
}

The Node class supports hierarchical construction.

Node n;
n["my"] = "data";
n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;
n.print();

std::cout << "total bytes: " << n.total_strided_bytes() << std::endl;

{
 "my": "data",
 "a":
 {
 "b":
 {
 "c": "d",
 "e": 64.0
 }
 }
}
total bytes: 15

Borrowing form JSON (and other similar notations), collections of named nodes are
called Objects and collections of unnamed nodes are called Lists, all other types
are leafs that represent concrete data.

Node n;
n["object_example/val1"] = "data";
n["object_example/val2"] = 10u;
n["object_example/val3"] = 3.1415;

for(int i = 0; i < 5 ; i++)
{
 Node &list_entry = n["list_example"].append();
 list_entry.set(i);
}

n.print();

{
 "object_example":
 {
 "val1": "data",
 "val2": 10,
 "val3": 3.1415
 },
 "list_example":
 [
 0,
 1,
 2,
 3,
 4
]
}

Behind the scenes, Node instances manage a collection of memory spaces.

n["a/b/c"] = "d";
n["a"]["b"]["e"] = 64.0;

Node ninfo;
n.info(ninfo);
ninfo.print();

{
 "mem_spaces":
 {
 "0x7fdf90406910":
 {
 "path": "my",
 "type": "allocated",
 "bytes": 5
 },
 "0x7fdf90406800":
 {
 "path": "a/b/c",
 "type": "allocated",
 "bytes": 2
 },
 "0x7fdf904067f0":
 {
 "path": "a/b/e",
 "type": "allocated",
 "bytes": 8
 }
 },
 "total_bytes_allocated": 15,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 15,
 "total_strided_bytes": 15
}

Bitwidth Style Types

When sharing data in scientific codes, knowing the precision of the underlining types is very important.

Conduit uses well defined bitwidth style types (inspired by NumPy) for leaf values.

Node n;
uint32 val = 100;
n["test"] = val;
n.print();
n.print_detailed();

{
 "test": 100
}

Standard C++ numeric types will be mapped by the compiler to bitwidth style types.

Node n;
int val = 100;
n["test"] = val;
n.print_detailed();

{
 "test": {"dtype":"int32", "number_of_elements": 1, "offset": 0, "stride": 4, "element_bytes": 4, "endianness": "little", "value": 100}
}

	Supported Bitwidth Style Types:

	
	signed integers: int8,int16,int32,int64

	unsigned integers: uint8,uint16,uint32,uint64

	floating point numbers: float32,float64

	Conduit provides these types by constructing a mapping for the current platform the from the following types:

	
	char, short, int, long, long long, float, double, long double

Compatible Schemas

When a set method is called on a Node, if the data passed to the set is compatible with the Node’s Schema the data is simply copied. No allocation or Schema changes occur. If the data is not compatible the Node will be reconfigured to store the passed data.

Schemas do not need to be identical to be compatible.

You can check if a Schema is compatible with another Schema using the Schema::compatible(Schema &test) method. Here is the criteria for checking if two Schemas are compatible:

	If the calling Schema describes an Object : The passed test Schema must describe an Object and the test Schema’s children must be compatible with the calling Schema’s children that have the same name.

	If the calling Schema describes a List: The passed test Schema must describe a List, the calling Schema must have at least as many children as the test Schema, and when compared in list order each of the test Schema’s children must be compatible with the calling Schema’s children.

	If the calling Schema describes a leaf data type: The calling Schema’s and test Schema’s dtype().id() and dtype().element_bytes() must match, and the calling Schema dtype().number_of_elements() must be greater than or equal than the test Schema’s.

Accessing Numeric Data

Accessing Scalars and Arrays

You can access leaf types (numeric scalars or arrays) using Node’s as_{type} methods.

(conduit_tutorial, error_handlers)

// rewire error handlers
conduit::utils::set_info_handler(my_info_handler);
conduit::utils::set_warning_handler(my_warning_handler);
conduit::utils::set_error_handler(my_error_handler);

// emit an example info message
CONDUIT_INFO("An info message");

Node n;
n["my_value"].set_float64(42.0);

// emit an example warning message

// using "as" for wrong type emits a warning, returns a default value (0.0)
float32 v = n["my_value"].as_float32();

// emit an example error message

try
{
 // fetching a non-existant path from a const Node emits an error
 const Node &n_my_value = n["my_value"];
 n_my_value["bad"];
}
catch(conduit::Error e)
{
 // pass
}

// restore default handlers

100

Or you can use Node::value(), which can infer the correct return type via a cast.

Node n;
int64 val = 100;
n = val;
int64 my_val = n.value();
std::cout << my_val << std::endl;

100

Accessing array data via pointers works the same way, using Node’s as_{type} methods.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.as_int64_ptr();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

Or using Node::value():

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,4);

int64 *my_vals = n.value();

for(index_t i=0; i < 4; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals[0] = 100
my_vals[1] = 200
my_vals[2] = 300
my_vals[3] = 400

For non-contiguous arrays, direct pointer access is complex due to the indexing required. Conduit provides a simple DataArray class that handles per-element indexing for all types of arrays.

int64 vals[4] = {100,200,300,400};

Node n;
n.set(vals,2, // # of elements
 0, // offset in bytes
 sizeof(int64)*2); // stride in bytes

int64_array my_vals = n.value();

for(index_t i=0; i < 2; i++)
{
 std::cout << "my_vals[" << i << "] = " << my_vals[i] << std::endl;
}

my_vals.print();

my_vals[0] = 100
my_vals[1] = 300
[100, 300]

Using Introspection and Conversion

In this example, we have an array in a node that we are interested in processing using an and existing function that only handles doubles. We ensure the node is compatible with the function, or transform it
to a contiguous double array.

//---
void must_have_doubles_function(double *vals,int num_vals)
{
 for(int i = 0; i < num_vals; i++)
 {
 std::cout << "vals[" << i << "] = " << vals[i] << std::endl;
 }
}

//---
void process_doubles(Node & n)
{
 Node res;
 // We have a node that we are interested in processing with
 // and existing function that only handles doubles.

 if(n.dtype().is_double() && n.dtype().is_compact())
 {
 std::cout << " using existing buffer" << std::endl;

 // we already have a contiguous double array
 res.set_external(n);
 }
 else
 {
 std::cout << " converting to temporary double array " << std::endl;

 // Create a compact double array with the values of the input.
 // Standard casts are used to convert each source element to
 // a double in the new array.
 n.to_double_array(res);
 }

 res.print();

 double *dbl_vals = res.value();
 int num_vals = res.dtype().number_of_elements();
 must_have_doubles_function(dbl_vals,num_vals);
}

//---
TEST(conduit_tutorial, numeric_double_conversion)
{

 float32 f32_vals[4] = {100.0,200.0,300.0,400.0};
 double d_vals[4] = {1000.0,2000.0,3000.0,4000.0};

 Node n;
 n["float32_vals"].set(f32_vals,4);
 n["double_vals"].set(d_vals,4);

 std::cout << "float32 case: " << std::endl;

 process_doubles(n["float32_vals"]);

 std::cout << "double case: " << std::endl;

 process_doubles(n["double_vals"]);
}

float32 case:
 converting to temporary double array
[100.0, 200.0, 300.0, 400.0]
vals[0] = 100
vals[1] = 200
vals[2] = 300
vals[3] = 400
double case:
 using existing buffer
[1000.0, 2000.0, 3000.0, 4000.0]
vals[0] = 1000
vals[1] = 2000
vals[2] = 3000
vals[3] = 4000

Generators

Using Generator instances to parse JSON schemas

The Generator class is used to parse conduit JSON schemas into a Node.

Generator g("{test: {dtype: float64, value: 100.0}}","conduit_json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print();
n.print_detailed();

100

{
 "test": 100.0
}

{
 "test": {"dtype":"float64", "number_of_elements": 1, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little", "value": 100.0}
}

The Generator can also parse pure json. For leaf nodes: wide types such as int64, uint64, and float64 are inferred.

Generator g("{test: 100.0}","json");

Node n;
g.walk(n);

std::cout << n["test"].as_float64() <<std::endl;
n.print_detailed();
n.print();

100

{
 "test": {"dtype":"float64", "number_of_elements": 1, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little", "value": 100.0}
}

{
 "test": 100.0
}

Schemas can easily be bound to in-core data.

float64 vals[2];
Generator g("{a: {dtype: float64, value: 100.0}, b: {dtype: float64, value: 200.0} }",
 "conduit_json",
 vals);

Node n;

100 vs 100
200 vs 200

{
 "a": 100.0,
 "b": 200.0
}

{
 "mem_spaces":
 {
 "0x7fff533bfff0":
 {
 "path": "a",
 "type": "external"
 }
 },
 "total_bytes_allocated": 0,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 16,
 "total_strided_bytes": 16
}

Compacting Nodes

Nodes can be compacted to transform sparse data.

CONDUIT_INFO("json_generator_compact");

float64 vals[] = { 100.0,-100.0,
 200.0,-200.0,
 300.0,-300.0,
 400.0,-400.0,
 500.0,-500.0};

// stride though the data with two different views.
Generator g1("{dtype: float64, length: 5, stride: 16}",
 "conduit_json",
 vals);
Generator g2("{dtype: float64, length: 5, stride: 16, offset:8}",
 "conduit_json",
 vals);

Node n1;
g1.walk_external(n1);
n1.print();

Node n2;
g2.walk_external(n2);
n2.print();

// look at the memory space info for our two views
Node ninfo;
n1.info(ninfo);
ninfo.print();

n2.info(ninfo);
ninfo.print();

// compact data from n1 to a new node
Node n1c;
n1.compact_to(n1c);

// look at the resulting compact data
n1c.print();
n1c.schema().print();
n1c.info(ninfo);
ninfo.print();

// compact data from n2 to a new node
Node n2c;
n2.compact_to(n2c);

[100.0, 200.0, 300.0, 400.0, 500.0]
[-100.0, -200.0, -300.0, -400.0, -500.0]

{
 "mem_spaces":
 {
 "0x7fff533bffb0":
 {
 "path": "",
 "type": "external"
 }
 },
 "total_bytes_allocated": 0,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 72
}

{
 "mem_spaces":
 {
 "0x7fff533bffb0":
 {
 "path": "",
 "type": "external"
 }
 },
 "total_bytes_allocated": 0,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 72
}
[100.0, 200.0, 300.0, 400.0, 500.0]
{"dtype":"float64", "number_of_elements": 5, "offset": 0, "stride": 8, "element_bytes": 8, "endianness": "little"}

{
 "mem_spaces":
 {
 "0x7fdf90406820":
 {
 "path": "",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 40
}
[-100.0, -200.0, -300.0, -400.0, -500.0]

{
 "mem_spaces":
 {
 "0x7fdf90405f70":
 {
 "path": "",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 40,
 "total_strided_bytes": 40
}

Data Ownership

The Node class provides two ways to hold data, the data is either owned or externally described:

	If a Node owns data, the Node allocated the memory holding the data and is responsible or deallocating it.

	If a Node externally describes data, the Node holds a pointer to the memory where the data resides and is not responsible for deallocating it.

set vs set_external

The Node::set methods support creating owned data and copying data values in both the owned and externally described cases. The Node::set_external methods allow you to create externally described data:

	set(...): Makes a copy of the data passed into the Node. This will trigger an allocation if the current data type of the Node is incompatible with what was passed. The Node assignment operators use their respective set variants, so they follow the same copy semantics.

	set_external(...): Sets up the Node to describe data passed and access the data externally. Does not copy the data.

index_t vsize = 5;
std::vector<float64> vals(vsize,0.0);
for(index_t i=0;i<vsize;i++)
{
 vals[i] = 3.1415 * i;
}

Node n;
n["v_owned"] = vals;
n["v_external"].set_external(vals);

n.info().print();

n.print();

vals[1] = -1 * vals[1];
n.print();

{
 "mem_spaces":
 {
 "0x7fdf90600120":
 {
 "path": "v_owned",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fdf90600010":
 {
 "path": "v_external",
 "type": "external"
 }
 },
 "total_bytes_allocated": 40,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 80,
 "total_strided_bytes": 80
}

{
 "v_owned": [0.0, 3.1415, 6.283, 9.4245, 12.566],
 "v_external": [0.0, 3.1415, 6.283, 9.4245, 12.566]
}

{
 "v_owned": [0.0, 3.1415, 6.283, 9.4245, 12.566],
 "v_external": [0.0, -3.1415, 6.283, 9.4245, 12.566]
}

Node Update Methods

The Node class provides three update methods which allow you to easily copy data or the description of data from a source node.

	Node::update(Node &source):

This method behaves similar to a python dictionary update. Entires from the source Node are copied into the calling Node, here are more concrete details:

	If the source describes an Object:
	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child with the same name already exists in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source describes a List:
	Update copies the children of the source Node into the calling Node. Normal set semantics apply: if a compatible child already exists in the same list order in the calling Node, the data will be copied. If not, the calling Node will dynamically construct children to hold copies of each child of the source Node.

	If the source Node describes a leaf data type:
	Update works exactly like a set (not true yet).

	Node::update_compatible(Node &source):

This method copies data from the children in the source Node that are compatible with children in the calling node. No changes are made where children are incompatible.

	Node::update_external(Node &source):

This method creates children in the calling Node that externally describe the children in the source node. It differs from Node::set_external(Node &source) in that set_external() will clear the calling Node so it exactly match an external description of the source Node, whereas update_external() will only change the children in the calling Node that correspond to children in the source Node.

Error Handling

Conduit’s APIs emit three types of messages for logging and error handling:

	Message Type
	Description

	Info
	General Information

	Warning
	Recoverable Error

	Error
	Fatal Error

Default Error Handlers

Conduit provides a default handler for each message type:

	Message Type
	Default Action

	Info
	Prints the message to standard out

	Warning
	Throws a C++ Exception (conduit::Error instance)

	Error
	Throws a C++ Exception (conduit::Error instance)

Using Custom Error Handlers

The conduit::utils namespace provides functions to override each of the three default handlers with a method
that provides the following signature:

void my_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 // your handling code here ...
}

conduit::utils::set_error_handler(my_handler);

Here is an example that re-wires all three error handlers to print to standard out:

void my_info_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[INFO] " << msg << std::endl;
}

void my_warning_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[WARNING!] " << msg << std::endl;
}

void my_error_handler(const std::string &msg,
 const std::string &file,
 int line)
{
 std::cout << "[ERROR!] " << msg << std::endl;
 // errors are considered fatal, aborting or unwinding the
 // call stack with an exception are the only viable options
 throw conduit::Error(msg,file,line);
}

// rewire error handlers
conduit::utils::set_info_handler(my_info_handler);
conduit::utils::set_warning_handler(my_warning_handler);
conduit::utils::set_error_handler(my_error_handler);

// emit an example info message
CONDUIT_INFO("An info message");

Node n;
n["my_value"].set_float64(42.0);

// emit an example warning message

// using "as" for wrong type emits a warning, returns a default value (0.0)
float32 v = n["my_value"].as_float32();

// emit an example error message

try
{
 // fetching a non-existant path from a const Node emits an error
 const Node &n_my_value = n["my_value"];
 n_my_value["bad"];
}
catch(conduit::Error e)
{
 // pass
}

[INFO] An info message
[WARNING!] Node::as_float32() const -- DataType float64 at path my_value does not equal expected DataType float32
[ERROR!] Cannot const fetch_child, Node(my_value) is not an object

Using Restoring Default Handlers

The default handlers are part of the conduit::utils interface, so you can restore them using:

// restore default handlers
conduit::utils::set_info_handler(conduit::utils::default_info_handler);
conduit::utils::set_warning_handler(conduit::utils::default_warning_handler);
conduit::utils::set_error_handler(conduit::utils::default_error_handler);

Relay

Note

The relay APIs and docs are work in progress.

Conduit Relay is an umbrella project for I/O and communication functionality built on top of Conduit’s Core API. It includes three components:

	io - I/O functionally beyond binary, memory mapped, and json-based text file I/O. Includes optional Silo and HDF5 I/O support.

	web - An embedded web server (built using CivetWeb [https://github.com/civetweb/civetweb]) that can host files and supports developing custom REST and WebSocket backends that use conduit::Node instances as payloads.

	mpi - Interfaces for MPI communication using conduit::Node instances as payloads.

The io and web features are built into the conduit_relay library. The MPI functionality exists in a separate library conduit_relay_mpi to avoid include and linking issues for serial codes that want to use relay.

Blueprint

The flexibly of the Conduit Node allows it to be used to represent a wide range of scientific data. Unconstrained, this flexibly can lead to many application specific choices for common types of data that could potentially be shared between applications.

The goal of Blueprint is to help facilite a set of shared higher-level conventions for using Conduit Nodes to hold common simulation data structures. The Blueprint library in Conduit provides methods to verify if a Conduit Node instance conforms to known conventions, which we call protocols. It also provides property and transform methods that can be used on conforming Nodes.

For now, Blueprint is focused on conventions for two important types of data:

	Multi-Component Arrays (protocol: mcarray)

A multi-component array is a collection of fixed-sized numeric tuples.
They are used in the context computational meshes to represent coordinate data or field data, such as the three directional components of a 3D velocity field. There are a few common in-core data layouts used by several APIs to accept multi-component array data, these include: row-major vs column-major layouts, or the use of arrays of struct vs struct of arrays in C-style languages. Blueprint provides transforms that convert any multi-component array to these common data layouts.

	Computational Meshes (protocol: mesh)

Many taxonomies and concrete mesh data models have been developed to allow computational meshes to be used in software. Blueprint’s conventions for representing mesh data were formed by negotiating with simulation application teams at LLNL and from a survey of existing projects that provide scientific mesh-related APIs including: ADIOS, Damaris, EAVL, MFEM, Silo, VTK, VTKm, and Xdmf. Blueprint’s mesh conventions are not a replacement for existing mesh data models or APIs. Our explicit goal is to outline a comprehensive, but small set of options for describing meshes in-core that simplifies the process of adapting data to several existing mesh-aware APIs.

Protocol Details

	mcarray
	Protocol

	Properties and Transforms

	Examples

	mesh
	Protocol
	Coordinate Sets

	Toplogies
	Topology Nomenclature

	Association with a Coordinate Set

	Optional association with a Grid Function

	Implicit Topology

	Explicit (Unstructured) Topology
	Single Shape Topology

	Mixed Shape Toplogies

	Fields

	State

	Examples

Blueprint Interface

Blueprint provides a generic top level verify() method, which exposes the verify checks for all supported protocols.

bool conduit::blueprint::verify(const std::string &protocol,
 const Node &node,
 Node &info);

verify() returns true if the passed Node node conforms to the named protocol. It also provides details about the verification, including specific errors in the passed info Node.

// setup our candidate and info nodes
Node n, info;

//create an example mesh
conduit::blueprint::mesh::examples::braid("tets",
 5,5,5,
 n);
// check if n conforms
if(conduit::blueprint::verify("mesh",n,info))
 std::cout << "mesh verify succeeded." << std::endl;
else
 std::cout << "mesh verify failed!" << std::endl;

// show some of the verify details
info["coordsets"].print();

{
 "coords":
 {
 "values":
 {
 "valid": "true"
 },
 "valid": "true"
 }
}

Methods for specific protocols are grouped in namespaces:

// setup our candidate and info nodes
Node n, verify_info, mem_info;

// create an example mcarray
conduit::blueprint::mcarray::examples::xyz("separate",5,n);

std::cout << "example 'separate' mcarray " << std::endl;
n.print();
n.info(mem_info);
mem_info.print();

// check if n conforms
if(conduit::blueprint::verify("mcarray",n,verify_info))
{
 // check if our mcarray has a specific memory layout
 if(!conduit::blueprint::mcarray::is_interleaved(n))
 {
 // copy data from n into the desired memory layout
 Node xform;
 conduit::blueprint::mcarray::to_interleaved(n,xform);
 std::cout << "transformed to 'interleaved' mcarray " << std::endl;
 xform.print_detailed();
 xform.info(mem_info);
 mem_info.print();
 }
}

example 'separate' mcarray

{
 "x": [1.0, 1.0, 1.0, 1.0, 1.0],
 "y": [2.0, 2.0, 2.0, 2.0, 2.0],
 "z": [3.0, 3.0, 3.0, 3.0, 3.0]
}

{
 "mem_spaces":
 {
 "0x7fd6c0600100":
 {
 "path": "x",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fd6c0600460":
 {
 "path": "y",
 "type": "allocated",
 "bytes": 40
 },
 "0x7fd6c0600130":
 {
 "path": "z",
 "type": "allocated",
 "bytes": 40
 }
 },
 "total_bytes_allocated": 120,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 120,
 "total_strided_bytes": 120
}
transformed to 'interleaved' mcarray

{
 "x": {"dtype":"float64", "number_of_elements": 5, "offset": 0, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [1.0, 1.0, 1.0, 1.0, 1.0]},
 "y": {"dtype":"float64", "number_of_elements": 5, "offset": 8, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [2.0, 2.0, 2.0, 2.0, 2.0]},
 "z": {"dtype":"float64", "number_of_elements": 5, "offset": 16, "stride": 24, "element_bytes": 8, "endianness": "little", "value": [3.0, 3.0, 3.0, 3.0, 3.0]}
}

{
 "mem_spaces":
 {
 "0x7fd6c0602090":
 {
 "path": "",
 "type": "allocated",
 "bytes": 120
 }
 },
 "total_bytes_allocated": 120,
 "total_bytes_mmaped": 0,
 "total_bytes_compact": 120,
 "total_strided_bytes": 312
}

mcarray

Protocol

To conform to the mcarray blueprint protocol, a Node must have at least one child and:

	All children must be numeric leaves

	All children must have the same number of elements

Properties and Transforms

	
	conduit::Node::is_contiguous()

	conduit::Node contains a general is_contiguous() instance method that is useful in the context of an mcarray.
It can be used to detect if an mcarray has a contiguous memory layout for tuple components (eg: struct of arrays style)

	Example: {x0, x1, ... , xN, y0, y1, ... , yN , z0, z1, ... , xN}

	conduit::blueprint::mcarray::is_interleaved(const Node &mcarray)

Checks if an mcarray has an interleaved memory layout for tuple components (eg: struct of arrays style)

	Example: {x0, y0, z0, x1, y1, z1, ... , xN, yN, zN}

	conduit::blueprint::mcarray::to_contiguous(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with a contiguous memory layout for tuple components

	Example: {x0, x1, ... , xN, y0, y1, ... , yN , z0, z1, ... , xN}

	conduit::blueprint::mcarray::to_interleaved(const Node &mcarray, Node &out)

Copies the data from an mcarray into a new mcarray with interleaved tuple values

	Example: {x0, y0, z0, x1, y1, z1, ... , xN, yN, zN}

Examples

The mcarray blueprint namespace includes a function xyz(), that generates examples
that cover a range of mcarray memory layout use cases.

conduit::blueprint::mcarray::examples::xyz(const std::string &mcarray_type,
 index_t npts,
 Node &out);

Here is a list of valid strings for the mcarray_type argument:

	MCArray Type
	Description

	interleaved
	One allocation, using interleaved memory layout
with float64 components (array of structs style)

	separate
	Three allocations, separe float64 components arrays for
{x,y,z}

	contiguous
	One allocation, using a contiguous memory layout with
float64 components (struct of arrays style)

	interleaved_mixed
	
	One allocation, using interleaved memory layout with:

	
	float32 x components

	float64 y components

	uint8 z components

The number of components per tuple is always three (x,y,z).

npts specifies the number tuples created.

The resulting data is placed the Node out, which is passed in via a reference.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_mcarray_examples.cpp.

mesh

Protocol

The mesh blueprint protocol defines a computational mesh using one or more Coordinate Sets (via child coordsets), one or more Topologies (via child topologies), zero or more Fields (via child fields), and optional State information (via child state). For simplicity, the descriptions below outline one Coordinate Set named coords one Topology named topo.

Coordinate Sets

To define a computational mesh, the first required entry is a set of spatial coordinate tuples that can underpin a mesh topology.

The mesh blueprint protocol supports sets of spatial coordinates from three coordinate systems:

	Cartesian: {x,y,z}

	Cylindrical: {r,z}

	Spherical: {r,theta,phi}

The mesh blueprint protocol supports three types of Coordinate Sets: uniform, rectilinear, and explicit. To conform to the protocol, each entry under coordsets must be an Object with entries from one of the cases outlined below:

	uniform

An implicit coordinate set defined as the cartesian product of i,j,k dimensions starting at an origin (ex: {x,y,z}) using a given spacing (ex: {dx,dy,dz}).

	Cartesian
	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j,k}

	coordsets/coords/origin/{x,y,z} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dx,dy,dz} (optional, default = {1.0, 1.0, 1.0})

	Cylindrical
	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,z} (optional, default = {0.0, 0.0})

	coordsets/coords/spacing/{dr,dz} (optional, default = {1.0, 1.0})

	Spherical
	coordsets/coords/type: “uniform”

	coordsets/coords/dims/{i,j}

	coordsets/coords/origin/{r,theta,phi} (optional, default = {0.0, 0.0, 0.0})

	coordsets/coords/spacing/{dr,dtheta, dphi} (optional, default = {1.0, 1.0, 1.0})

	rectilinear

An implicit coordinate set defined as the cartesian product of passed coordinate arrays.

	Cartesian
	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{x,y,z}

	Cylindrical:
	coordsets/coords/type: “rectilinear”

	coordsets/coords/values/{r,z}

	Spherical
	coordsets/coords/type: “uniform”

	coordsets/coords/values/{r,theta,phi}

	explicit

An explicit set of coordinates, which includes values that conforms to the mcarray blueprint protocol.

	Cartesian
	coordsets/coords/type: “explicit”

	coordsets/coords/values/{x,y,z}

	Cylindrical
	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,z}

	Spherical
	coordsets/coords/type: “explicit”

	coordsets/coords/values/{r,theta,phi}

Toplogies

The next entry required to describe a computational mesh is its topology. To conform to the protocol, each entry under topologies must be an Object that contains one of the topology descriptions outlined below.

Topology Nomenclature

The mesh blueprint protocol describes meshes in terms of vertices, edges, faces, and elements.

The following element shape names are supported:

	Name
	Geometric Type
	Specified By

	point
	point
	an index to a single coordinate tuple

	line
	line
	indices to 2 coordinate tuples

	tri
	triangle
	indices to 3 coordinate tuples

	quad
	quadrilateral
	indices to 4 coordinate tuples

	tet
	tetrahedron
	indices to 4 coordinate tuples

	hex
	hexahedron
	indices to 8 coordinate tuples

Association with a Coordinate Set

Each topology entry must have a child coordset with a string that references a valid coordinate set by name.

	topologies/topo/coordset: “coords”

Optional association with a Grid Function

Topologies can optionally include a child grid_function with a string that references a valid field by name.

	topologies/topo/grid_function: “gf”

Implicit Topology

The mesh blueprint protocol accepts three implicit ways to define a grid of elements on top of a coordinate set. For coordinate set with 1D coordinate tuples, line elements are used, for sets with 2D coordinate tuples quad elements are used, and for 3D coordinate tuples hex elements are used.

	uniform: An implicit topology that defines a grid of elements on top of a uniform coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “uniform”

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

	rectilinear: An implicit topology that defines a grid of elements on top of a rectilinear coordinate set.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “rectilinear”

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

	structured: An implicit topology that defines a grid of elements on top of an explicit coordinate set.
	topologies/topo/coordset: “coords”

	topologies/topo/type = “structured”

	topologies/topo/elements/dims/{i,j,k}

	topologies/topo/elements/origin/{i0,j0,k0} (optional, default = {0,0,0})

Explicit (Unstructured) Topology

Single Shape Topology

For topologies using a homogenous collection of element shapes (eg: all hexs), the topology can be specified by
a connectivity array and a shape name.

	topologies/topo/coordset: “coords”

	topologies/topo/type: “unstructured”

	topologies/topo/elements/shape: (shape name)

	topologies/topo/elements/connectivity: (index array)

Mixed Shape Toplogies

For topologies using a non-homogenous collections of element shapes (eg: hexs and texs), the topology can
specified using a single shape topology for each element shape.

	list - A Node in the List role, that contains a children that conform to the Single Shape Topology case.

	object - A Node in the Object role, that contains a children that conform to the Single Shape Topology case.

Note

Future version of the mesh blueprint will expand support to include mixed elements types in a single array with related
index arrays.

Fields

Fields are used to hold simulation state arrays associated with a mesh topology.

A field contains an mcarray and information about how this data is associated with elements of the topology.
To conform to the protocol, each entry under fields must be an Object that contains one of these two styles of field descriptions:

	Standard Fields:
	fields/den/topology: “topo”

	fields/den/association: “vertex” | “element”

	fields/den/values: (mcarray)

	High Order Fields:
	fields/den/topology: “topo”

	fields/den/basis: (a string that includes an mfem-style finite element collection name)

	fields/den/values: (mcarray)

State

Optional state information is used to provide metadata about the mesh. While the mesh blueprint is focused on describing a single domain of a domain decomposed mesh, the state info can be used to identify a specific mesh domain in the context of a domain decomposed mesh.

To conform, the state entry must be an Object and can have the following optional entries:

	state/time: (number)

	state/cycle: (number)

	state/number_of_domains: (integer)

	state/domain_id: (integer)

Examples

The mesh blueprint namespace includes a function braid(), that generates examples
that cover the range of coordinate sets and topologies supported.

The example datasets include a vertex-centered scalar field braid, an element-centered scalar field radial and
as a vertex-centered vector field vel.

conduit::blueprint::mesh::examples::braid(const std::string &mesh_type,
 index_t nx,
 index_t ny,
 index_t nz,
 Node &out);

Here is a list of valid strings for the mesh_type argument:

	Mesh Type
	Description

	uniform
	2d or 3d uniform grid
(implicit coords, implicit topology)

	rectilinear
	2d or 3d rectilinear grid
(implicit coords, implicit topology)

	structured
	2d or 3d structured grid
(explicit coords, implicit topology)

	point
	2d or 3d unstructured mesh of point elements
(explicit coords, explicit topology)

	lines
	2d or 3d unstructured mesh of line elements
(explicit coords, explicit topology)

	tris
	2d unstructured mesh of triangle elements
(explicit coords, explicit topology)

	quads
	2d unstructured mesh of quadrilateral elements
(explicit coords, explicit topology)

	tets
	3d unstructured mesh of tetrahedral elements
(explicit coords, explicit topology)

	hexs
	3d unstructured mesh of hexahedral elements
(explicit coords, explicit topology)

nx,ny,nz specify the number of elements in the x,y,z directions.

nz is ignored for 2d-only examples.

The resulting data is placed the Node out, which is passed in via a reference.

For more details, see the unit tests that exercise these examples in src/tests/blueprint/t_blueprint_mesh_examples.cpp

Building

Getting Started

Clone the Conduit repo:

	From Github

git clone https://github.com/llnl/conduit.git

	From LLNL’s CZ Bitbucket Server (Mirror for LLNL Users)

git clone https://{USER_NAME}@lc.llnl.gov/bitbucket/scm/con/conduit.git

Configure a build:

config-build.sh is a simple wrapper for the cmake call to configure conduit.
This creates a new out-of-source build directory build-debug and a directory for the install install-debug.
It optionally includes a host-config.cmake file with detailed configuration options.

cd conduit
./config-build.sh

Build, test, and install Conduit:

cd build-debug
make -j 8
make test
make install

Build Options

The core Conduit library has no dependencies outside of the repo, however Conduit provides optional support for I/O and Communication (MPI) features that require externally built third party libraries.

Conduit’s build system supports the following CMake options:

	BUILD_SHARED_LIBS - Controls if shared (ON) or static (OFF) libraries are built. (default = ON)

	ENABLE_TESTS - Controls if unit tests are built. (default = ON)

	ENABLE_DOCS - Controls if the Conduit documentation is built (when sphinx and doxygen are found). (default = ON)

	ENABLE_COVERAGE - Controls if code coverage compiler flags are used to build Conduit. (default = OFF)

	ENABLE_PYTHON - Controls if the Conduit Python module is built. (default = OFF)

The Conduit Python module will build for both Python 2 and Python 3. To select a specific Python, set the CMake variable PYTHON_EXECUTABLE to path of the desired python binary. The Conduit Python module requires Numpy. The selected Python instance must provide Numpy, or PYTHONPATH must be set to include a Numpy install compatible with the selected Python install.

	ENABLE_MPI - Controls if the conduit_relay_mpi library is built. (default = OFF)

We are using CMake’s standard FindMPI logic. To select a specific MPI set the CMake variables MPI_C_COMPILER and MPI_CXX_COMPILER, or the other FindMPI options for MPI include paths and MPI libraries.

To run the mpi unit tests on LLNL’s LC platforms, you may also need change the CMake variables MPIEXEC and MPIEXEC_NUMPROC_FLAG, so you can use srun and select a partition. (for an example see: src/host-configs/chaos_5_x86_64.cmake)

	HDF5_DIR - Path to a HDF5 install (optional).

Controls if HDF5 I/O support is built into conduit_relay.

	SILO_DIR - Path to a Silo install (optional).

Controls if Silo I/O support is built into conduit_relay. When used, the following CMake variables must also be set:

	HDF5_DIR - Path to a HDF5 install. (Silo support depends on HDF5)

Installation Path Options

Conduit’s build system provides an install target that installs the Conduit libraires, headers, python modules, and documentation. These CMake options allow you to control install destination paths:

	CMAKE_INSTALL_PREFIX - Standard CMake install path option (optional).

	PYTHON_MODULE_INSTALL_PREFIX - Path to install Python modules into (optional).

When present and ENABLE_PYTHON is ON, Conduit’s Python modules will be installed to ${PYTHON_MODULE_INSTALL_PREFIX} directory instead of ${CMAKE_INSTALL_PREFIX}/python-modules.

Host Config Files

To handle build options, third party library paths, etc we rely on CMake’s initial-cache file mechanism.

cmake -C config_file.cmake

We call these initial-cache files host-config files, since we typically create a file for each platform or specific hosts if necessary.

The config-build.sh script uses your machine’s hostname, the SYS_TYPE environment variable, and your platform name (via uname) to look for an existing host config file in the host-configs directory at the root of the conduit repo. If found, it passes the host config file to CMake via the -C command line option.

cmake {other options} -C host-configs/{config_file}.cmake ../

You can find example files in the host-configs directory.

These files use standard CMake commands. CMake set commands need to specify the root cache path as follows:

set(CMAKE_VARIABLE_NAME {VALUE} CACHE PATH "")

Bootstrapping Third Party Dependencies

We use Spack (http://software.llnl.gov/spack) to automate builds of third party dependencies on OSX and Linux. Conduit builds on Windows as well, but there is no automated process to build dependencies necessary to support Conduit’s optional features.

Note

Conduit developers use bootstrap-env.sh and scripts/uberenv/uberenv.py to setup third party libraries for Conduit development. Due to this, the process builds more libraries than necessary for most use cases. For example, we build independent installs of Python 2 and Python 3 to make it easy to check Python C-API compatibility during development. For users of conduit, we recommend using the Conduit package included with Spack. For info on how to use this package see Building Conduit and its Dependencies with Spack.

On OSX and Linux, you can use bootstrap-env.sh (located at the root of the conduit repo) to help setup your development environment. This script uses scripts/uberenv/uberenv.py, which leverages Spack to build all of the external third party libraries and tools used by Conduit. Fortran support is optional and all dependencies should build without a fortran compiler. After building these libraries and tools, it writes an initial host-config file and adds the Spack built CMake binary to your PATH so can immediately call the config-build.sh helper script to configure a conduit build.

#build third party libs using spack
source bootstrap-env.sh

#copy the generated host-config file into the standard location
cp uberenv_libs/`hostname`*.cmake to host-configs/

run the configure helper script
./config-build.sh

or you can run the configure helper script and give it the
path to a host-config file
./config-build.sh uberenv_libs/`hostname`*.cmake

When bootstrap-env.sh runs uberenv.py, all command line arguments are forwarded:

python scripts/uberenv/uberenv.py $@

So any options to bootstrap-env.sh are effectively uberenv.py options.

Uberenv Options for Building Third Party Dependencies

uberenv.py has a few options that allow you to control how dependencies are built:

	Option
	Description
	Default

	–prefix
	Destination directory
	uberenv_libs

	–spec
	Spack spec
	linux: %gcc
osx: %clang

	–compilers-yaml
	Spack compilers settings file
	scripts/uberenv/compilers.yaml

Default invocation on Linux:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %gcc \
 --compilers-yaml scripts/uberenv/compilers.yaml

Default invocation on OSX:

python scripts/uberenv/uberenv.py --prefix uberenv_libs \
 --spec %clang \
 --compilers-yaml scripts/uberenv/compilers.yaml

For details on Spack’s spec syntax, see the Spack Specs & dependencies [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] documentation.

You can edit scripts/uberenv/compilers.yaml or use the –compilers-yaml option to change the compiler settings
used by Spack. See the Spack Compiler Configuration [http://spack.readthedocs.io/en/latest/getting_started.html#manual-compiler-configuration]
documentation for details.

For OSX, the defaults in compilers.yaml are X-Code’s clang and gfortran from https://gcc.gnu.org/wiki/GFortranBinaries#MacOS.

Note

The bootstrapping process ignores ~/.spack/compilers.yaml to avoid conflicts
and surprises from a user’s specific Spack settings on HPC platforms.

When run, uberenv.py checkouts a specific version of Spack from github as spack in the
destination directory. It then uses Spack to build and install Conduit’s dependencies into
spack/opt/spack/. Finally, it generates a host-config file {hostname}.cmake in the
destination directory that specifies the compiler settings and paths to all of the dependencies.

Building Conduit and its Dependencies with Spack

As of 1/4/2017, Spack’s develop branch includes a recipe [https://github.com/LLNL/spack/blob/develop/var/spack/repos/builtin/packages/conduit/package.py] to build and install Conduit.

To install the latest released version of Conduit with all options (and also build all of its dependencies as necessary) run:

spack install conduit

To build and install Conduit’s github master branch run:

spack install conduit@master

The Conduit Spack package provides several variants [http://spack.readthedocs.io/en/latest/basic_usage.html#specs-dependencies] that customize the options and dependencies used to build Conduit:

	Variant
	Description
	Default

	shared
	Build Conduit as shared libraries
	ON (+shared)

	cmake
	Build CMake with Spack
	ON (+cmake)

	python
	Enable Conduit Python support
	ON (+python)

	mpi
	Enable Conduit MPI support
	ON (+mpi)

	hdf5
	Enable Conduit HDF5 support
	ON (+hdf5)

	silo
	Enable Conduit Silo support
	ON (+silo)

	doc
	Build Conduit’s Documentation
	OFF (+docs)

Variants are enabled using + and disabled using ~. For example, to build Conduit with the minimum set of options (and dependencies) run:

spack install conduit~python~mpi~hdf5~silo~docs

Using Conduit in Another Project

Under src/examples there are examples demonstrating how to use Conduit in a CMake-based build system (using-with-cmake) and via a Makefile (using-with-make).

Building Conduit in a Docker Container

Under src/examples/docker/ubuntu there is an example Dockerfile which can be used to create an ubuntu-based docker image with a build of the Conduit. There is also a script that demonstrates how to build a Docker image from the Dockerfile (example_build.sh) and a script that runs this image in a Docker container (example_run.sh). The Conduit repo is cloned into the image’s file system at /conduit, the build directory is /conduit/build-debug, and the install directory is /conduit/install-debug.

Glossary

This page aims to provide succinct descriptions of important concepts in Conduit.

children

Used for Node instances in the Object and List role interfaces. A Node may hold a set of indexed children (List role), or indexed and named children (Object role). In both of these cases the children of the Node can be accessed, or removed via their index. Methods related to this concept include:

	Node::number_of_children()

	Node::child(index_t)

	Node::child_ptr(index_t)

	Node::operator=(index_t)

	Node::remove(index_t)

	Schema::number_of_children()

	Schema::child(index_t)

	Schema::child_ptr(index_t)

	Schema::operator=(index_t)

	Schema::remove(index_t)

paths

Used for Node instances in Object role interface. In the Object role, a Node has a collection of indexed and named children. Access by name is done via a path. The path is a forward-slash separated URI, where each segment maps to Node in a hierarchal tree. Methods related to this concept include:

	Node::fetch(string)

	Node::fetch_ptr(string)

	Node::operator=(string)

	Node::has_path(string)

	Node::remove(string)

	Schema::fetch(string)

	Schema::fetch_child(string)

	Schema::fetch_ptr(string)

	Schema::operator=(string)

	Schema::has_path(string)

	Schema::remove(string)

external

Concept used throughout the Conduit API to specify ownership for passed data.
When using Node constructors, Generators, or Node::set calls, you have the option of using an external variant. When external is specified, a Node does not own (allocate or deallocate) the memory for the data it holds.

Developer Documentation

Source Code Repo Layout

	src/libs/

	conduit/ - Main Conduit library source

	relay/ - Relay libraries source

	blueprint/ - Blueprint library source

	src/tests/

	conduit/ - Unit tests for the main Conduit library

	relay/ - Unit tests for Conduit Relay libraries

	blueprint/ - Unit tests for Blueprint library

	thirdparty/ - Unit tests for third party libraries

	src/examples/ - Basic examples related to building and using Conduit

	src/docs/ - Documentation

	src/thirdparty_builtin/ - Third party libraries we build and manage directly

Build System Info

Configuring with CMake

See Building in the User Documentation.

Important CMake Targets

	make: Builds Conduit.

	make test: Runs unit tests.

	make docs: Builds sphinx and doxygen documentation.

	make install: Installs conduit libraries, headers, and documentation to CMAKE_INSTALL_PREFIX

Adding a Unit Test

	Create a test source file in src/tests/{lib_name}/

	All test source files should have a t_ prefix on their file name to make them easy to identify.

	Add the test to build system by editing src/tests/{lib_name}/CMakeLists.txt

Git Development Workflow

Conduit’s primary source repository and issue tracker are hosted on github:

https://github.com/llnl/conduit

We are using a Github Flow model, which is a simpler variant of the confusingly similar sounding Git Flow model.

Here are the basics:

	Development is done on topic branches off the master.

	Merge to master is only done via a pull request.

	The master should always compile and pass all tests.

	Releases are tagged off of master.

More details on GitHub Flow:

https://guides.github.com/introduction/flow/index.html

Here are some other rules to abide by:

	If you have write permissions for the Conduit repo, you can merge your own pull requests.

	After completing all intended work on branch, please delete the remote branch after merging to master. (Github has an option to do this after you merge a pull request.)

Releases

Source distributions for Conduit releases are hosted on github:

https://github.com/LLNL/conduit/releases

v0.2.1

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.1.tar.gz]

	Docs [http://software.llnl.gov/conduit/v0.2.1]

Highlights

	General

	Added fixes to support static builds on BGQ using xlc and gcc

	Fixed missing install of fortran module files

	Eliminated separate fortran libs by moving fortran symbols into their associated main libs

	Change Node set_external to support const Node ref

	Refactor path and file systems utils functions for clarity.

	Blueprint

	Fixed bug with verify of mesh/coords for rectilinear case

	Added support to the blueprint python module for the mesh and mcarray protocol methods

	Added stand alone blueprint verify executable

	Relay

	Updated the version of civetweb used to avoid dlopen issues with SSL for static builds

v0.2.0

	Source Tarball [https://github.com/LLNL/conduit/archive/v0.2.0.tar.gz]

	Docs [http://software.llnl.gov/conduit/v0.2.0]

Highlights

	General

	Changes to clarify concepts in the conduit::Node API

	Added const access to conduit::Node’s children and a new NodeConstIterator

	Added support for building on Windows

	Added more Python, C, and Fortran API support

	Resolved several bugs across libraries

	Resolved compiler warnings and memory leaks

	Improved unit test coverage

	Renamed source and header files for clarity and to avoid potential conflicts with other projects

	Blueprint

	Added verify support for the mcarray and mesh protocols

	Added functions that create examples instances of mcarrays and meshes

	Added memory layout transform helpers for mcarrays

	Added a helper that creates a mesh blueprint index from a valid mesh

	Relay

	Added extensive HDF5 I/O support for reading and writing between HDF5 files and conduit Node trees

	Changed I/O protocol string names for clarity

	Refactored the relay::WebServer and the Conduit Node Viewer application

	Added entangle, a python script ssh tunneling solution

Presentations

Slides

	SciPy 2016 talk on Conduit (July 2016)

	Conduit Introduction (February 2015)

Talks

	SciPy 2016 talk on Conduit (July 2016) [https://youtu.be/3_GKjeRUPKg]

Interviews

	RCE HPC Podcast on Conduit [http://www.rce-cast.com/Podcast/rce-101-conduit.html]

Articles

	LLNL Computation Article on the 2014-2015 Harvey Mudd CS Conduit Clinic Project [http://computation.llnl.gov/newsroom/hpc-partnership-harvey-mudd-college-and-livermore]

License Info

Conduit License

Copyright (c) 2014-2017, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory

LLNL-CODE-666778

All rights reserved.

This file is part of Conduit.

For details, see: http://software.llnl.gov/conduit/.

Please also read conduit/LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

	Neither the name of the LLNS/LLNL nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

	This notice is required to be provided under our contract with the U.S.
Department of Energy (DOE). This work was produced at Lawrence
Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with
the DOE.

	Neither the United States Government nor Lawrence Livermore National
Security, LLC nor any of their employees, makes any warranty, express
or implied, or assumes any liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not
infringe privately-owned rights.

	Also, reference herein to any specific commercial products, process,
or services by trade name, trademark, manufacturer or otherwise does
not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or Lawrence Livermore
National Security, LLC. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or Lawrence Livermore National Security, LLC, and
shall not be used for advertising or product endorsement purposes.

Third Party Builtin Libraries

Here is a list of the software components used by conduit in source form and the location of their respective license files in our source repo.

C and C++ Libraries

	gtest: thirdparty_builtin/gtest-1.7.0/LICENSE (BSD Style License)

	libb64: thirdparty_builtin/libb64/LICENSE (Public Domain)

	rapidjson: thirdparty_builtin/rapidjson/license.txt (MIT License)

	civetweb: thirdparty_builtin/civetweb-1.8/LICENSE.md (MIT License)

JavaScript Libraries

	fattable: src/libs/relay/web_clients/rest_client/resources/fattable/LICENSE (MIT License)

	pure: src/libs/relay/web_clients/rest_client/resources/pure/LICENSE.md (BSD Style License)

	d3: src/libs/relay/web_clients/rest_client/resources/d3/LICENSE (BSD Style License)

	jquery: /src/libs/relay/web_clients/wsock_test/resources/jquerty-license.txt (MIT License)

Fortran Libraries

	fruit: thirdparty_builtin/fruit-3.3.9/LICENSE.txt (BSD Style License)

Build System

	CMake: http://www.cmake.org/licensing/ (BSD Style License)

	Spack: http://software.llnl.gov/spack (LGPL License)

Documentation

	doxygen: http://www.stack.nl/~dimitri/doxygen/index.html (GPL License)

	sphinx: http://sphinx-doc.org/ (BSD Style License)

	breathe: https://github.com/michaeljones/breathe (BSD Style License)

	rtd sphinx theme: https://github.com/snide/sphinx_rtd_theme/blob/master/LICENSE (MIT License)

Index

API Documentation

This set of documentation is extracted using Doxygen.

Node

Schema

DataType

Generator

DataArray

 _static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Conduit

 		User Documentation

 		Conduit

 		Tutorial

 		Relay

 		Blueprint

 		Protocol Details

 		Blueprint Interface

 		Building

 		Getting Started

 		Build Options

 		Installation Path Options

 		Host Config Files

 		Bootstrapping Third Party Dependencies

 		Building Conduit and its Dependencies with Spack

 		Using Conduit in Another Project

 		Building Conduit in a Docker Container

 		Glossary

 		children

 		paths

 		external

 		Developer Documentation

 		Source Code Repo Layout

 		Build System Info

 		Configuring with CMake

 		Important CMake Targets

 		Adding a Unit Test

 		Git Development Workflow

 		Releases

 		v0.2.1

 		Highlights

 		v0.2.0

 		Highlights

 		Presentations

 		Slides

 		Talks

 		Interviews

 		Articles

 		License Info

 		Conduit License

 		Third Party Builtin Libraries

 		Build System

 		Documentation

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

